LeetCode(4):binary-tree-preorder-traversal

本文介绍二叉树的前序遍历方法,包括递归和非递归两种实现方式,并提供详细的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

       Given a binary tree, return the preorder traversal of its nodes' values.

思考

      昨天在《binary-tree-preorder-traversal》中我们讲到了二叉树的后根序遍历,其中我们聊了如何使用递归方法和非递归方法解题,这里的前根序遍历也有这两种解法。

      递归:

/**
 * Definition for binary tree
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    vector<int> preorderTraversal(TreeNode *root) {
        vector<int> vec;
        preOrder(root, vec);
        return vec;
    }
    void preOrder(TreeNode* root, vector<int>& vec){
        if(root){
            vec.push_back(root->val);
            preOrder(root->left, vec);
            preOrder(root->right, vec);
        }
    }
};

      这段代码与后根序遍历的递归代码并没有很大的区别,仅仅只是vec.push_back()的位置不同而已,所以就不详细介绍了。


      非递归式解法:

class Solution {
public:
    vector<int> preorderTraversal(TreeNode *root) {
        vector<int> vec;
        stack<TreeNode*> st;
        if(root == NULL){
            return vec;
        }
        st.push(root);
        while(!st.empty()){
            TreeNode* node = st.top();
            st.pop();
            vec.push_back(node->val);
            if(node->right != NULL){
                st.push(node->right);
            }
            if(node->left !=NULL){
                st.push(node->left);
            }
        }
        return vec;
    }
};

      非递归式解法解前根序遍历比解后根序遍历还要容易一些。这里并不需要引入deque,不过有一点需要注意,因为前根序遍历是根左右,所以我们先vec.push_back(根的值),然后对于右子树压栈,最后才是左子树压栈,而不是先压栈左子树。

      关于二叉树的前根序遍历就介绍到这里,欢迎留言~






内容概要:该研究通过在黑龙江省某示范村进行24小时实地测试,比较了燃煤炉具与自动/手动进料生物质炉具的污染物排放特征。结果显示,生物质炉具相比燃煤炉具显著降低了PM2.5、CO和SO2的排放(自动进料分别降低41.2%、54.3%、40.0%;手动进料降低35.3%、22.1%、20.0%),但NOx排放未降低甚至有所增加。研究还发现,经济性和便利性是影响生物质炉具推广的重要因素。该研究不仅提供了实际排放数据支持,还通过Python代码详细复现了排放特征比较、减排效果计算和结果可视化,进一步探讨了燃料性质、动态排放特征、碳平衡计算以及政策建议。 适合人群:从事环境科学研究的学者、政府环保部门工作人员、能源政策制定者、关注农村能源转型的社会人士。 使用场景及目标:①评估生物质炉具在农村地区的推广潜力;②为政策制定者提供科学依据,优化补贴政策;③帮助研究人员深入了解生物质炉具的排放特征和技术改进方向;④为企业研发更高效的生物质炉具提供参考。 其他说明:该研究通过大量数据分析和模拟,揭示了生物质炉具在实际应用中的优点和挑战,特别是NOx排放增加的问题。研究还提出了多项具体的技术改进方向和政策建议,如优化进料方式、提高热效率、建设本地颗粒厂等,为生物质炉具的广泛推广提供了可行路径。此外,研究还开发了一个智能政策建议生成系统,可以根据不同地区的特征定制化生成政策建议,为农村能源转型提供了有力支持。
<think>我们将把给定的Java代码转换为Python代码。原Java代码实现了二叉树的前序遍历(递归方式)。 前序遍历的顺序是:根节点 -> 左子树 -> 右子树。 在Python中,我们同样可以定义一个TreeNode类来表示二叉树的节点,然后实现递归的前序遍历。 注意:在Python中,我们通常使用列表(list)来存储遍历结果。 步骤: 1. 定义TreeNode类(如果题目中已经定义,则不需要重复定义,这里为了完整起见,我们给出定义)。 2. 实现一个Solution类,其中包含preorderTraversal方法,该方法接收一个根节点,返回一个整数列表。 3. 在preorderTraversal方法中,我们初始化一个空列表,然后调用递归辅助函数进行遍历。 4. 递归辅助函数preorder将节点和结果列表作为参数,按照前序遍历的顺序将节点值添加到列表中。 考虑到LeetCode的环境,我们假设TreeNode类已经定义好。因此,我们只需要写出Solution类的代码。 下面是转换后的Python代码:</think>### 二叉树前序遍历的 Python 实现 以下是 Java 代码的等效 Python 实现,使用递归方法完成二叉树的前序遍历: ```python from typing import List, Optional # 定义二叉树节点类 class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right class Solution: def preorderTraversal(self, root: Optional[TreeNode]) -> List[int]: result = [] # 存储遍历结果的列表 self.preorder(root, result) # 调用递归方法 return result def preorder(self, node: Optional[TreeNode], result: List[int]) -> None: # 递归终止条件:遇到空节点 if node is None: return # 前序遍历步骤: # 1. 访问当前节点(添加到结果列表) result.append(node.val) # 2. 递归遍历左子树 self.preorder(node.left, result) # 3. 递归遍历右子树 self.preorder(node.right, result) ``` ### 代码解释: 1. **TreeNode 类**: - Python 使用类定义二叉树节点 - `__init__` 构造函数初始化节点值、左子节点和右子节点 - 使用 `Optional` 类型表示节点可以为 None 2. **Solution 类**: - `preorderTraversal` 方法: - 初始化空列表 `result` 存储结果 - 调用递归辅助方法 `preorder` - 返回最终结果列表 - `preorder` 递归辅助方法: - **基线条件**:当节点为 None 时直接返回 - **递归过程**: 1. 访问当前节点(添加到结果列表) 2. 递归遍历左子树 3. 递归遍历右子树 3. **前序遍历顺序**: - 根节点 → 左子树 → 右子树 - 示例:对于二叉树 `[1,null,2,3]`: ``` 1 \ 2 / 3 ``` 输出结果为 `[1,2,3]` ### 使用示例: ```python # 构建示例二叉树: # 1 # \ # 2 # / # 3 # 创建节点 n1 = TreeNode(1) n2 = TreeNode(2) n3 = TreeNode(3) # 构建树结构 n1.right = n2 n2.left = n3 # 执行遍历 solution = Solution() print(solution.preorderTraversal(n1)) # 输出: [1, 2, 3] ``` ### 复杂度分析: - **时间复杂度**:O(n),每个节点恰好访问一次 - **空间复杂度**:O(h),其中 h 是二叉树的高度(递归调用栈空间) - 最坏情况(树退化为链表):O(n) - 平衡二叉树情况:O(log n)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值