问题描述
数轴上有一条长度为L(L为偶数)的线段,左端点在原点,右端点在坐标L处。有n个不计体积的小球在线段上,开始时所有的小球都处在偶数坐标上,速度方向向右,速度大小为1单位长度每秒。
当小球到达线段的端点(左端点或右端点)的时候,会立即向相反的方向移动,速度大小仍然为原来大小。
当两个小球撞到一起的时候,两个小球会分别向与自己原来移动的方向相反的方向,以原来的速度大小继续移动。
现在,告诉你线段的长度L,小球数量n,以及n个小球的初始位置,请你计算t秒之后,各个小球的位置。
提示
因为所有小球的初始位置都为偶数,而且线段的长度为偶数,可以证明,不会有三个小球同时相撞,小球到达线段端点以及小球之间的碰撞时刻均为整数。
同时也可以证明两个小球发生碰撞的位置一定是整数(但不一定是偶数)。
输入格式
输入的第一行包含三个整数n, L, t,用空格分隔,分别表示小球的个数、线段长度和你需要计算t秒之后小球的位置。
第二行包含n个整数a1, a2, …, an,用空格分隔,表示初始时刻n个小球的位置。
输出格式
输出一行包含n个整数,用空格分隔,第i个整数代表初始时刻位于ai的小球,在t秒之后的位置。
样例输入
3 10 5
4 6 8
样例输出
7 9 9
样例说明
初始时,三个小球的位置分别为4, 6, 8。
一秒后,三个小球的位置分别为5, 7, 9。
两秒后,第三个小球碰到墙壁,速度反向,三个小球位置分别为6, 8, 10。
三秒后,第二个小球与第三个小球在位置9发生碰撞,速度反向(注意碰撞位置不一定为偶数),三个小球位置分别为7, 9, 9。
四秒后,第一个小球与第二个小球在位置8发生碰撞,速度反向,第三个小球碰到墙壁,速度反向,三个小球位置分别为8, 8, 10。
五秒后,三个小球的位置分别为7, 9, 9。
样例输入
10 22 30
14 12 16 6 10 2 8 20 18 4
样例输出
6 6 8 2 4 0 4 12 10 2
数据规模和约定
对于所有评测用例,1 ≤ n ≤ 100,1 ≤ t ≤ 100,2 ≤ L ≤ 1000,0 < ai < L。L为偶数。
保证所有小球的初始位置互不相同且均为偶数。
题目分析
由于数据量太小,可以直接用模拟解决问题,注意题目描述的小球体积可视为一个点,配合图的理解,转换为数组存放模拟。
时间限制: 1.0s
内存限制: 256.0MB
代码如下
#include<iostream>
using namespace std;
int main()
{
int n, l, t, s[1000], a[1000], b[1000];
cin>>n>>l>>t;
for(int i=0;i<n;i++)
{
cin>>a[i];
s[i] = 1; //设置初始速度为右(正方向)
}
while (t != 0)
{
for(int i=0;i<=l;i++) b[i] = -1; //初始化状态数组
for(int i=0;i<n;i++)
{
a[i] = a[i] + 1 * s[i];
if (a[i] == l || a[i] == 0) s[i] *= -1; //如果碰到边界,小球转向
if (b[a[i]] == -1)
{
b[a[i]] = i; //记录该位置的小球状况
}
else
{
s[i] *= -1; //如果之前记录过,说明该位置有两个小球,即为碰撞,两个小球速度反向
s[b[a[i]]] *= -1;
}
}
// cout<<"t = "<<t<<endl;
// for(int i=0;i<n;i++) cout<<a[i]<<' ';
// cout<<endl;
t--; //计时
}
for(int i=0;i<n;i++) cout<<a[i]<<' ';
// cout<<endl;
return 0;
}