用matplotlib绘制卷积神经网络(CNN)图

本文提供了一种使用Python和Matplotlib库来可视化卷积神经网络(CNN)结构的方法。通过自定义函数添加网络层、连接和注释,清晰地展示了输入层、卷积层、池化层、全连接层等组成部分。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

"""
Copyright (c) 2016, Gavin Weiguang Ding
All rights reserved.
Redistribution and use in source and binary forms, with or without
    modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
    list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
    this list of conditions and the following disclaimer in the documentation
    and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its contributors
    may be used to endorse or promote products derived from this software
    without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
    AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
    LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
    CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
    SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
    INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
    CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
    POSSIBILITY OF SUCH DAMAGE.
"""


import os
import numpy as np
import matplotlib.pyplot as plt
plt.rcdefaults()
from matplotlib.lines import Line2D
from matplotlib.patches import Rectangle
from matplotlib.collections import PatchCollection
%matplotlib inline

NumConvMax = 8
NumFcMax = 20
White = 1.
Light = 0.7
Medium = 0.5
Dark = 0.3
Black = 0.


def add_layer(patches, colors, size=24, num=5,
              top_left=[0, 0],
              loc_diff=[3, -3],
              ):
    # add a rectangle
    top_left = np.array(top_left)
    loc_diff = np.array(loc_diff)
    loc_start = top_left - np.array([0, size])
    for ind in range(num):
        patches.append(Rectangle(loc_start + ind * loc_diff, size, size))
        if ind % 2:
            colors.append(Medium)
        else:
            colors.append(Light)


def add_mapping(patches, colors, start_ratio, patch_size, ind_bgn,
                top_left_list, loc_diff_list, num_show_list, size_list):

    start_loc = top_left_list[ind_bgn] \
        + (num_show_list[ind_bgn] - 1) * np.array(loc_diff_list[ind_bgn]) \
        + np.array([start_ratio[0] * size_list[ind_bgn],
                    -start_ratio[1] * size_list[ind_bgn]])

    end_loc = top_left_list[ind_bgn + 1] \
        + (num_show_list[ind_bgn + 1] - 1) \
        * np.array(loc_diff_list[ind_bgn + 1]) \
        + np.array([(start_ratio[0] + .5 * patch_size / size_list[ind_bgn]) *
                    size_list[ind_bgn + 1],
                    -(start_ratio[1] - .5 * patch_size / size_list[ind_bgn]) *
                    size_list[ind_bgn + 1]])

    patches.append(Rectangle(start_loc, patch_size, patch_size))
    colors.append(Dark)
    patches.append(Line2D([start_loc[0], end_loc[0]],
                          [start_loc[1], end_loc[1]]))
    colors.append(Black)
    patches.append(Line2D([start_loc[0] + patch_size, end_loc[0]],
                          [start_loc[1], end_loc[1]]))
    colors.append(Black)
    patches.append(Line2D([start_loc[0], end_loc[0]],
                          [start_loc[1] + patch_size, end_loc[1]]))
    colors.append(Black)
    patches.append(Line2D([start_loc[0] + patch_size, end_loc[0]],
                          [start_loc[1] + patch_size, end_loc[1]]))
    colors.append(Black)


def label(xy, text, xy_off=[0, 4]):
    plt.text(xy[0] + xy_off[0], xy[1] + xy_off[1], text,
             family='sans-serif', size=8)


if __name__ == '__main__':

    fc_unit_size = 2
    layer_width = 40

    patches = []
    colors = []

    fig, ax = plt.subplots()


    ############################
    # conv layers
    size_list = [32, 18, 10, 6, 4]
    num_list = [3, 32, 32, 48, 48]
    x_diff_list = [0, layer_width, layer_width, layer_width, layer_width]
    text_list = ['Inputs'] + ['Feature\nmaps'] * (len(size_list) - 1)
    loc_diff_list = [[3, -3]] * len(size_list)

    num_show_list = list(map(min, num_list, [NumConvMax] * len(num_list)))
    top_left_list = np.c_[np.cumsum(x_diff_list), np.zeros(len(x_diff_list))]

    for ind in range(len(size_list)):
        add_layer(patches, colors, size=size_list[ind],
                  num=num_show_list[ind],
                  top_left=top_left_list[ind], loc_diff=loc_diff_list[ind])
        label(top_left_list[ind], text_list[ind] + '\n{}@{}x{}'.format(
            num_list[ind], size_list[ind], size_list[ind]))


    ############################
    # in between layers
    start_ratio_list = [[0.4, 0.5], [0.4, 0.8], [0.4, 0.5], [0.4, 0.8]]
    patch_size_list = [5, 2, 5, 2]
    ind_bgn_list = range(len(patch_size_list))
    text_list = ['Convolution', 'Max-pooling', 'Convolution', 'Max-pooling']

    for ind in range(len(patch_size_list)):
        add_mapping(patches, colors, start_ratio_list[ind],
                    patch_size_list[ind], ind,
                    top_left_list, loc_diff_list, num_show_list, size_list)
        label(top_left_list[ind], text_list[ind] + '\n{}x{} kernel'.format(
            patch_size_list[ind], patch_size_list[ind]), xy_off=[26, -65])


    ############################
    # fully connected layers
    size_list = [fc_unit_size, fc_unit_size, fc_unit_size]
    num_list = [768, 500, 2]
    num_show_list = list(map(min, num_list, [NumFcMax] * len(num_list)))
    x_diff_list = [sum(x_diff_list) + layer_width, layer_width, layer_width]
    top_left_list = np.c_[np.cumsum(x_diff_list), np.zeros(len(x_diff_list))]
    loc_diff_list = [[fc_unit_size, -fc_unit_size]] * len(top_left_list)
    text_list = ['Hidden\nunits'] * (len(size_list) - 1) + ['Outputs']

    for ind in range(len(size_list)):
        add_layer(patches, colors, size=size_list[ind], num=num_show_list[ind],
                  top_left=top_left_list[ind], loc_diff=loc_diff_list[ind])
        label(top_left_list[ind], text_list[ind] + '\n{}'.format(
            num_list[ind]))

    text_list = ['Flatten\n', 'Fully\nconnected', 'Fully\nconnected']

    for ind in range(len(size_list)):
        label(top_left_list[ind], text_list[ind], xy_off=[-10, -65])

    ############################
    colors += [0, 1]
    collection = PatchCollection(patches, cmap=plt.cm.gray)
    collection.set_array(np.array(colors))
    ax.add_collection(collection)
    plt.tight_layout()
    plt.axis('equal')
    plt.axis('off')
    plt.show()
    fig.set_size_inches(8, 2.5)

    fig_dir = './'
    fig_ext = '.png'
    fig.savefig(os.path.join(fig_dir, 'convnet_fig' + fig_ext),
bbox_inches='tight', pad_inches=0)




原文链接:https://github.com/gwding/draw_convnet



评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值