Salient deconvolutional networks

本文探讨了DeConvNets在从非监督学习到可视化应用的发展,特别是在理解并可视化卷积神经网络(CNN)中起到的关键作用。随着研究的深入,DeConvNets也被应用于语义图像分割。通过分析相关文献,揭示了DeConvNets如何帮助生成图像并用于理解深度学习模型的内在工作原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Related work
DeConvNets最初用于非监督学习【1】【2】,后被用于可视化【3】。文章【4】基于文章【5】,文章【5】是在先前hog,sift,BoVW或其他一些神经网络表达基础上。【6】学习第二个网络用于第一个网络的inverse。【7,8,9】利用cnn的特性,生成图像confuse them。本文与【10】的工作相似。
近期DeConvNets被用于语义图像分割
[1]M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus. Deconvolutional Networks. In Proc.
CVPR, 2010.
[2]M. D. Zeiler, G. W. Taylor, and R. Fergus. Adaptive Deconvolutional Networks for Mid and
High Level Feature Learning. In Proc. ICCV, 2011.
[3]M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In Proc.
ECCV, 2014.
【4】J. Yosinksi, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson. Understanding neural networks
through deep visualization. In ICML Deep Learning Workshop, 2015.
【5】A. Mahendran and A. Vedaldi. Understanding deep image representations by inverting them.
In Proc. CVPR, 2015.
【6】C. M. Bishop. Neural Networks for Pattern Recognition. Clarendon Press, Oxford, 1995.
【7】A. Nguyen, J. Yosinski, and J. Clune. Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. In Proc. CVPR, 2015.
【8】C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Goodfellow, and R. Fergus.
Intriguing properties of neural networks. In Proc. ICLR, 2014.
【9】A. Tatu, F. Lauze, M. Nielsen, and B. Kimia. Exploring the representation capabilities of the
HOG descriptor. In ICCV Workshop, 2011.
【10】J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller. Striving for simplicity: The
all convolutional net˙In iclr, 2015.
【11】S. Hong, H. Noh, and B. Han. Decoupled deep neural network for semi-supervised semantic
segmentation. In Proc. NIPS, pages 1495–1503, 2015.
【12】H. Noh, S. Hong, and B. Han. Learning deconvolution network for semantic segmentation.
In Proc. ICCV, pages 1520–1528, 2015.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值