杭电1028 Ignatius and the Princess III(母函数)

本文探讨了一个关于给定正整数N的不同等式数量的问题,通过一个具体的例子说明了如何寻找所有可能的组合,并提供了一段C语言实现的代码来解决这个问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Ignatius and the Princess III

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 12747    Accepted Submission(s): 9010


Problem Description
"Well, it seems the first problem is too easy. I will let you know how foolish you are later." feng5166 says.

"The second problem is, given an positive integer N, we define an equation like this:
  N=a[1]+a[2]+a[3]+...+a[m];
  a[i]>0,1<=m<=N;
My question is how many different equations you can find for a given N.
For example, assume N is 4, we can find:
  4 = 4;
  4 = 3 + 1;
  4 = 2 + 2;
  4 = 2 + 1 + 1;
  4 = 1 + 1 + 1 + 1;
so the result is 5 when N is 4. Note that "4 = 3 + 1" and "4 = 1 + 3" is the same in this problem. Now, you do it!"
 

Input
The input contains several test cases. Each test case contains a positive integer N(1<=N<=120) which is mentioned above. The input is terminated by the end of file.
 

Output
For each test case, you have to output a line contains an integer P which indicate the different equations you have found.
 

Sample Input
4 10 20
 

Sample Output
5 42 627
//母函数模板
#include<stdio.h>
#include<string.h>
const int MAX=1000;
int c1[MAX],c2[MAX];
int main()
{
	int N;
	while(scanf("%d",&N)!=EOF)
	{
		memset(c1,0,sizeof(c1));
		memset(c2,0,sizeof(c2));
		for(int i=0;i<=N;i++)
			c1[i]=1;
		for(int i=2;i<=N;i++)
		{
			for(int j=0;j<=N;j++)
			{
				for(int k=0;k+j<=N;k+=i)
					c2[j+k]+=c1[j];
			}
			for(int j=0;j<=N;j++)
			{
				c1[j]=c2[j];
				c2[j]=0;
			}
		}
		printf("%d\n",c1[N]);
	}
return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值