目录
尚未补充完整!!!
预处理数据
bash脚本
'/r’错误
sed -i 's/\r$//' filename
整个文件夹
for i in *;do if [[ -f $i ]]; then sed
仿LJS预处理
下载, 解压, 重采样, 调用py制作XXX|abc文件.
#!/usr/bin/env bash
set -e
DATADIR="Biao-Bei"
RARARCHIVE="BZNSYP.rar"
ENDPOINT="https://weixinxcxdb.oss-cn-beijing.aliyuncs.com/gwYinPinKu/BZNSYP.rar"
if [ ! -d "$DATADIR" ]; then
echo "dataset is missing, solving ..."
if [ ! -f "$BZ2ARCHIVE" ]; then
echo "no source!! ..."
wget "$ENDPOINT"
fi
if [ ! -d "Wave" ]; then
echo "dataset is missing, unpacking ..."
rar x "$RARARCHIVE"
fi
mkdir -p "$DATADIR"
mv "Wave" "$DATADIR"
mv "ProsodyLabeling" "$DATADIR"
mv "PhoneLabeling" "$DATADIR"
cd "$DATADIR/Wave"
echo pwd
for x in ./*.wav
do
b=${x##*/}
sox $b -r 22050 tmp_$b
rm -rf $b
mv tmp_$b $b
done
cd ..
cd ..
python scripts/__Biao-Bei_prepare_dataset.py
fi
提取mel
改代码
启动docker
NV_GPU='7' nvidia-docker run --shm-size=1g --ulimit memlock=-1 --ulimit stack=67108864 -it --rm --ipc=host -v $PWD:/workspace/tacotron2/ tacotron2 bash
sed -i 's/\r$//' filename
bash
或者是:
CUDA_VISIBLE_DEVICES="0,1" bash scripts/docker/interactive.sh
训练
只训练一条数据:
bash trian
合成
模型1
借用好像是多核训练Biao-Bei pinyin 的waveGlow, (记得好像是多核训练的, 不是太好), 不热身.
python inference.py --tacotron2 oneCore_Biao-Bei_PhonePrssCrystal_output/checkpoint_Tacotron2_1500 --waveglow Biao-Bei_output/checkpoint_WaveGlow_650 -o Biao-Bei_output/ -i phrases/Biao-Bei_PhonePrssCrystal_phrase.txt --amp-run
模型2
借用单核训练的Biao-Bei pinyin 的waveGlow, 但步数450时loss nan, 就结束了, 不热身.
python inference.py --tacotron2 oneCore_Biao-Bei_PhonePrssCrystal_output/checkpoint_Tacotron2_1500 --waveglow oneCore_Biao-Bei_output/checkpoint_WaveGlow_450 -o oneCore_Biao-Bei_output/ -i phrases/Biao-Bei_PhonePrssCrystal_phrase.txt --amp-run
模型3
借用单核训练的LJSpeeh1.1 的waveGlow, 英文的和中文分布可能会有偏差, 但测试效果很好, 因为标贝我还不会调参, 不热身.
python inference.py --tacotron2 oneCore_Biao-Bei_PhonePrssCrystal_output/checkpoint_Tacotron2_1500 --waveglow oneCore_output/checkpoint_WaveGlow_1000 -o oneCore_Biao-Bei_PhonePrssCrystal_output/ -i phrases/Biao-Bei_PhonePrssCrystal_phrase.txt --amp-run
python inference.py --tacotron2 oneCore_Biao-Bei_PhonePrssCrystal_output/checkpoint_Tacotron2_1500 --waveglow oneCore_output/checkpoint_WaveGlow_1000 -o oneCore_output/ -i phrases/Biao-Bei_PhonePrssCrystal_phrase.txt --amp-run
模型4
如果合成英文的话:
python inference.py --tacotron2 output/checkpoint_Tacotron2_750 --oneCore_output/checkpoint_WaveGlow_1000 -o output/ -i phrases/phrase.txt --amp-run
借用LJSpeech 的waveGlow, 不热身.
python inference.py --tacotron2 oneCore_Biao-Bei_PhonePrssCrystal_output/checkpoint_Tacotron2_1500 --waveglow oneCore_output/checkpoint_WaveGlow_1000 -o oneCore_Biao-Bei_PhonePrssCrystal_outpu