Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array [−2,1,−3,4,−1,2,1,−5,4],
the contiguous subarray [4,−1,2,1] has the largest sum = 6.
More practice:
给一个我喜欢的AC方法:
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
要注意这里返回条件的界定和设定,十分容易出错!!!
这里的报错和我的Eclipse上显示的不一样,我认为我的方法应该是AC的, 不知道是什么bug。
| Input: | [-1,-2] |
| Output: | -2 |
| Expected: | -1 |
public class Solution {
public int maxSubArray(int[] A) {
int max = -9999;
int maxindex = 0;
int min = 9999;
int minindex = 0;
int sum = 0;
int[] B = A;
for(int i = 0; i < A.length; i++){
sum = sum + A[i];
B[i] = sum;
//System.out.println(B[i]);
}
for(int i = 0; i < A.length; i++){
maxindex = (B[i] > max)? i:maxindex;
max = Math.max(B[i], max);
// System.out.println(maxindex);
}
for(int i = 0; i < A.length; i++){
minindex = (B[i] < min)? i:minindex;
min = Math.min(B[i], min);
}
// System.out.println(maxindex);
// System.out.println(minindex);
if(maxindex == minindex)
return A[maxindex];
else{
if(maxindex > minindex){
return B[maxindex] - B[minindex];
}
else
return - B[maxindex] + B[minindex];
}
}
}
给一个我喜欢的AC方法:
public class Solution {
public int maxSubArray(int[] A) {
int max = A[0];
int[] sum = new int[A.length];
sum[0] = A[0];
for (int i = 1; i < A.length; i++) {
sum[i] = Math.max(A[i], sum[i - 1] + A[i]);
max = Math.max(max, sum[i]);
}
return max;
}
}
本文介绍了一种寻找含至少一个数的最大子数组和的算法。通过示例[-2,1,-3,4,-1,2,1,-5,4]说明了如何找到最大和为6的连续子数组[4,-1,2,1]。提供了两种解决方案:一种是O(n)的时间复杂度方法,另一种是使用分治策略的方法。
112

被折叠的 条评论
为什么被折叠?



