Bear and Raspberry

本文介绍了一只聪明的熊如何通过借贷蜂蜜桶并利用不同天数间覆盆子价格差来赚取最大利润的问题。熊将在特定的一天借蜂蜜桶卖出,并在次日用剩余的覆盆子买回蜂蜜桶归还给朋友。
A. Bear and Raspberry
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

The bear decided to store some raspberry for the winter. He cunningly found out the price for a barrel of honey in kilos of raspberry for each of the following n days. According to the bear's data, on the i-th (1 ≤ i ≤ n) day, the price for one barrel of honey is going to is xikilos of raspberry.

Unfortunately, the bear has neither a honey barrel, nor the raspberry. At the same time, the bear's got a friend who is ready to lend him a barrel of honey for exactly one day for c kilograms of raspberry. That's why the bear came up with a smart plan. He wants to choose some day d (1 ≤ d < n), lent a barrel of honey and immediately (on day d) sell it according to a daily exchange rate. The next day (d + 1) the bear wants to buy a new barrel of honey according to a daily exchange rate (as he's got some raspberry left from selling the previous barrel) and immediately (on day d + 1) give his friend the borrowed barrel of honey as well as c kilograms of raspberry for renting the barrel.

The bear wants to execute his plan at most once and then hibernate. What maximum number of kilograms of raspberry can he earn? Note that if at some point of the plan the bear runs out of the raspberry, then he won't execute such a plan.

Input

The first line contains two space-separated integers, n and c (2 ≤ n ≤ 100, 0 ≤ c ≤ 100),  — the number of days and the number of kilos of raspberry that the bear should give for borrowing the barrel.

The second line contains n space-separated integers x1, x2, ..., xn (0 ≤ xi ≤ 100), the price of a honey barrel on day i.

Output

Print a single integer — the answer to the problem.

Sample test(s)
input
5 1
5 10 7 3 20
output
3
input
6 2
100 1 10 40 10 40
output
97
input
3 0
1 2 3
output
0

Note

In the first sample the bear will lend a honey barrel at day 3 and then sell it for 7. Then the bear will buy a barrel for 3 and return it to the friend. So, the profit is (7 - 3 - 1) = 3.

In the second sample bear will lend a honey barrel at day 1 and then sell it for 100. Then the bear buy the barrel for 1 at the day 2. So, the profit is (100 - 1 - 2) = 97.

 

#include <stdio.h>
#include <stdlib.h>
int main()
{
    int m,n,i,j,c;
    int a[100];
    while(scanf("%d%d",&n,&c)!=EOF)
    {
        for(i=1; i<=n; i++)
        {
            scanf("%d",&a[i]);
        }
        int s[100],ss=0;
        for(i=1; i<n; i++)
        {
            s[i]=0;
            s[i]=a[i]-a[i+1]-c;
            if(s[i]<0) ss++;
        }
        int max=0;
        for(i=1; i<n; i++)
        {
            if(s[i]>max)
                max=s[i];
        }
        if(ss==n-1)
            printf("0\n");
        else
            printf("%d\n",max);
    }
    return 0;
}


 

内容概要:本文详细介绍了“秒杀商城”微服务架构的设计与实战全过程,涵盖系统从需求分析、服务拆分、技术选型到核心功能开发、分布式事务处理、容器化部署及监控链路追踪的完整流程。重点解决了高并发场景下的超卖问题,采用Redis预减库存、消息队列削峰、数据库乐观锁等手段保障数据一致性,并通过Nacos实现服务注册发现与配置管理,利用Seata处理跨服务分布式事务,结合RabbitMQ实现异步下单,提升系统吞吐能力。同时,项目支持Docker Compose快速部署和Kubernetes生产级编排,集成Sleuth+Zipkin链路追踪与Prometheus+Grafana监控体系,构建可观测性强的微服务系统。; 适合人群:具备Java基础和Spring Boot开发经验,熟悉微服务基本概念的中高级研发人员,尤其是希望深入理解高并发系统设计、分布式事务、服务治理等核心技术的开发者;适合工作2-5年、有志于转型微服务或提升架构能力的工程师; 使用场景及目标:①学习如何基于Spring Cloud Alibaba构建完整的微服务项目;②掌握秒杀场景下高并发、超卖控制、异步化、削峰填谷等关键技术方案;③实践分布式事务(Seata)、服务熔断降级、链路追踪、统一配置中心等企业级中间件的应用;④完成从本地开发到容器化部署的全流程落地; 阅读建议:建议按照文档提供的七个阶段循序渐进地动手实践,重点关注秒杀流程设计、服务间通信机制、分布式事务实现和系统性能优化部分,结合代码调试与监控工具深入理解各组件协作原理,真正掌握高并发微服务系统的构建能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值