tf.reduce_sum()

彻底理解 tf.reduce_sum()

越往里axis就越大,依次加1。
这里需要注意的是,axis可以为负数,此时表示倒数第axis个维度,这和Python中列表切片的用法类似。

下面举个多维tensor例子简单说明。下面是个 2 * 3 * 4 的tensor。

[[[ 1   2   3   4]
  [ 5   6   7   8]
  [ 9   10 11 12]],
 [[ 13  14 15 16]
  [ 17  18 19 20]
  [ 21  22 23 24]]]

tf.reduce_sum(tensor, axis=0) axis=0 说明是按第一个维度进行求和。那么求和结果shape是3*4

[[1+13   2+14   3+15 4+16]
 [5+17   6+18   7+19 8+20]
 [9+21 10+22 11+23 12+24]]

依次类推,如果axis=1,那么求和结果shape是2*4,即:

[[ 1 + 5 + 9   2 + 6+10   3 + 7+11   4 + 8+12]
 [13+17+21     14+18+22   15+19+23   16+20+24]]

如果axis=2,那么求和结果shape是2*3,即:

[[1+2+3+4          5+6+7+8          9+10+11+12]
 [13+14+15+16      17+18+19+20      1+22+23+24]]

类似的方法还有:

  • tf.reduce_mean():计算tensor指定轴方向上的所有元素的平均值;
  • tf.reduce_max():计算tensor指定轴方向上的各个元素的最大值;
  • tf.reduce_all():计算tensor指定轴方向上的各个元素的逻辑和(and运算);
  • tf.reduce_any():计算tensor指定轴方向上的各个元素的逻辑或(or运算);
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值