拿来药材(数据),架起八卦炉(模型),点着六味真火(优化算法),就摇着蒲扇等着丹药出炉了。
不过,当过厨子的都知道,同样的食材,同样的菜谱,但火候不一样了,这出来的口味可是千差万别。火小了夹生,火大了易糊,火不匀则半生半糊。
机器学习也是一样,模型优化算法的选择直接关系到最终模型的性能。有时候效果不好,未必是特征的问题或者模型设计的问题,很可能就是优化算法的问题。
说到优化算法,入门级必从SGD学起,老司机则会告诉你更好的还有AdaGrad/AdaDelta,或者直接无脑用Adam。可是看看学术界的最新paper,却发现一众大神还在用着入门级的SGD,最多加个Moment或者Nesterov ,还经常会黑一下Adam。
病态矩阵是一种特殊矩阵。指条件数很大的非奇异矩阵。病态矩阵的逆和以其为系数矩阵的方程组的界对微小扰动十分敏感,对数值求解会带来很大困难。
在求解任何反问题的过程中通常会遇到病态矩阵问题,而且病态矩阵问题还未有很好的解决方法,尤其是长方形、大型矩阵。目前主要有Tikhonov、奇异值截断、奇异值修正、迭代法等方法。
求解方程组时对数据的小扰动很敏感的矩阵。
解线性方程组Ax=b时,若对于系数矩阵A及右端项b的小扰动 δA、δb,方程组 (A+δA)χ=b+δb的解 χ 与原方程组Ax=b的解差别很大,则称矩阵A为病态矩阵。方程组的近似解 χ 一般都不可能恰好使剩余 r=b-Aχ 为零,这时 χ