传送门:【POJ】1724 ROADS
题目分析:老老实实的用最短路写了,虽然dfs或者bfs更快。。
最短路就需要二维了,d[v][cost]表示从起点到v且花费为cost的最短路的长度,然后就是普通的最短路了。效率很低。
代码如下:
#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std ;
#define REP( i , a , b ) for ( int i = ( a ) ; i < ( b ) ; ++ i )
#define FOR( i , a , b ) for ( int i = ( a ) ; i <= ( b ) ; ++ i )
#define REV( i , a , b ) for ( int i = ( a ) ; i >= ( b ) ; -- i )
#define travel( e , H , u ) for ( Edge* e = H[u] ; e ; e = e -> next )
#define CLR( a , x ) memset ( a , x , sizeof a )
typedef int value_t ;
const int MAXN = 105 ;
const int MAXH = 1000005 ;
const int MAXE = 1000005 ;
const int INF = 0x3f3f3f3f ;
struct Edge {
int v , w ;
value_t c ;
Edge* next ;
} ;
struct Heap {
int v , idx , w ;
Heap () {}
Heap ( value_t v , int idx , int w ) : v ( v ) , idx ( idx ) , w ( w ) {}
bool operator < ( const Heap& a ) const {
return v < a.v ;
}
} ;
struct priority_queue {
Heap h[MAXH] ;
int point ;
priority_queue () : point ( 1 ) {}
void clear () {
point = 1 ;
}
void maintain ( int o ) {
int p = o , l = o << 1 , r = o << 1 | 1 ;
while ( o > 1 && h[o] < h[o >> 1] ) {
swap ( h[o] , h[o >> 1] ) ;
o >>= 1 ;
}
o = p ;
while ( 1 ) {
if ( l < point && h[l] < h[p] ) p = l ;
if ( r < point && h[r] < h[p] ) p = r ;
if ( o == p ) break ;
swap ( h[o] , h[p] ) ;
o = p , l = o << 1 , r = o << 1 | 1 ;
}
}
void push ( value_t v , int idx , int w ) {
h[point] = Heap ( v , idx , w ) ;
maintain ( point ++ ) ;
}
void pop () {
h[1] = h[-- point] ;
maintain ( 1 ) ;
}
bool empty () {
return point == 1 ;
}
int front () {
return h[1].idx ;
}
Heap top () {
return h[1] ;
}
} ;
struct Shortest_Path_Algorithm {
priority_queue q ;
Edge E[MAXE] ;
Edge* H[MAXN] ;
Edge* cur ;
value_t d[MAXN][10005] ;
bool vis[MAXN][10005] ;
void clear () {
cur = E ;
CLR ( H , 0 ) ;
}
void addedge ( int u , int v , value_t c , int w ) {
cur -> v = v ;
cur -> c = c ;
cur -> w = w ;
cur -> next = H[u] ;
H[u] = cur ++ ;
}
void dijkstra ( int s , int K ) {
q.clear () ;
CLR ( vis , 0 ) ;
CLR ( d , INF ) ;
d[s][0] = 0 ;
q.push ( d[s][0] , s , 0 ) ;
while ( !q.empty () ) {
Heap tmp = q.top () ;
int u = tmp.idx ;
int w = tmp.w ;
q.pop () ;
if ( vis[u][w] ) continue ;
vis[u][w] = 1 ;
travel ( e , H , u ) {
int v = e -> v , cost = w + e -> w ;
if ( cost <= K && d[v][cost] > d[u][w] + e -> c ) {
d[v][cost] = d[u][w] + e -> c ;
q.push ( d[v][cost] , v , cost ) ;
}
}
}
}
} G ;
int K , n , m ;
void solve () {
int u , v , c , w ;
G.clear () ;
while ( m -- ) {
scanf ( "%d%d%d%d" , &u , &v , &c , &w ) ;
G.addedge ( u , v , c , w ) ;
}
G.dijkstra ( 1 , K ) ;
int ans = INF ;
FOR ( i , 0 , K ) if ( ans > G.d[n][i] ) ans = G.d[n][i] ;
printf ( "%d\n" , ans == INF ? -1 : ans ) ;
}
int main () {
while ( ~scanf ( "%d%d%d" , &K , &n , &m ) ) solve () ;
return 0 ;
}