题目分析:很直白的一道题,满足容量最大的情况下再求最短路,容量就二分吧,如果在该容量下存在最短路就调整下界,否则调整上界。
代码如下:
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std ;
#define REP( i , a , b ) for ( int i = ( a ) ; i < ( b ) ; ++ i )
#define FOR( i , a , b ) for ( int i = ( a ) ; i <= ( b ) ; ++ i )
#define REV( i , a , b ) for ( int i = ( a ) ; i >= ( b ) ; -- i )
#define CLR( a , x ) memset ( a , x , sizeof a )
const int MAXN = 1005 ;
const int MAXH = 100005 ;
const int MAXE = 100005 ;
const int INF = 0x3f3f3f3f ;
struct Edge {
int v , c , n ;
int h ;
Edge () {}
Edge ( int v , int c , int n , int h ) : v ( v ) , c ( c ) , n ( n ) , h ( h ) {}
} ;
struct Heap {
int v , idx ;
Heap () {}
Heap ( int v , int idx ) : v ( v ) , idx ( idx ) {}
bool operator < ( const Heap& a ) const {
return v < a.v ;
}
} ;
struct priority_queue {
Heap heap[MAXH] ;
int point ;
priority_queue () : point ( 1 ) {}
void clear () {
point = 1 ;
}
bool empty () {
return point == 1 ;
}
void maintain ( int o ) {
int x = o ;
while ( o > 1 && heap[o] < heap[o >> 1] ) {
swap ( heap[o] , heap[o >> 1] ) ;
o >>= 1 ;
}
o = x ;
int p = o , l = o << 1 , r = o << 1 | 1 ;
while ( o < point ) {
if ( l < point && heap[l] < heap[p] ) p = l ;
if ( r < point && heap[r] < heap[p] ) p = r ;
if ( p == o ) break ;
swap ( heap[o] , heap[p] ) ;
o = p , l = o << 1 , r = o << 1 | 1 ;
}
}
void push ( int v , int idx ) {
heap[point] = Heap ( v , idx ) ;
maintain ( point ++ ) ;
}
void pop () {
heap[1] = heap[-- point] ;
maintain ( 1 ) ;
}
int front () {
return heap[1].idx ;
}
Heap top () {
return heap[1] ;
}
} ;
struct Shortest_Path_Algorithm {
priority_queue q ;
Edge E[MAXE] ;
int H[MAXN] , cur ;
int d[MAXN] ;
bool vis[MAXN] ;
int used[MAXN] ;
int f[MAXN] ;
int Q[MAXN] , head , tail ;
void init () {
cur = 0 ;
CLR ( H , -1 ) ;
}
void addedge ( int u , int v , int c , int h ) {
E[cur] = Edge ( v , c , H[u] , h ) ;
H[u] = cur ++ ;
}
bool dijkstra ( int s , int t , int h ) {
q.clear () ;
CLR ( d , INF ) ;
CLR ( vis , 0 ) ;
d[s] = 0 ;
q.push ( d[s] , s ) ;
while ( !q.empty () ) {
int u = q.front () ;
q.pop () ;
if ( vis[u] ) continue ;
vis[u] = 1 ;
for ( int i = H[u] ; ~i ; i = E[i].n ) {
int v = E[i].v , c = E[i].c ;
if ( E[i].h >= h && d[v] > d[u] + c ) {
d[v] = d[u] + c ;
q.push ( d[v] , v ) ;
}
}
}
return d[t] != INF ;
}
void spfa ( int s , int t ) {
head = tail = 0 ;
CLR ( d , INF ) ;
CLR ( vis , 0 ) ;
d[s] = 0 ;
Q[tail ++] = s ;
while ( head != tail ) {
int u = Q[head ++] ;
if ( head == MAXN ) head = 0 ;
vis[u] = 0 ;
for ( int i = H[u] ; ~i ; i = E[i].n ) {
int v = E[i].v , c = E[i].c ;
if ( d[v] > d[u] + c ) {
d[v] = d[u] + c ;
if ( !vis[v] ) {
vis[v] = 1 ;
if ( d[v] < d[Q[head]] ) {
if ( head == 0 ) head = MAXN ;
Q[-- head] = v ;
} else {
Q[tail ++] = v ;
if ( tail == MAXN ) tail = 0 ;
}
}
}
}
}
}
} G ;
int n , m ;
int s , t , limit ;
/*
void scanf ( int& x , char c = 0 ) {
while ( ( c = getchar () ) < '0' || c > '9' ) ;
x = c - '0' ;
while ( ( c = getchar () ) >= '0' && c <= '9' ) x = x * 10 + c - '0' ;
}
*/
void solve () {
int u , v , c , h ;
int ans = -1 ;
G.init () ;
while ( m -- ) {
scanf ( "%d%d%d%d" , &u , &v , &h , &c ) ;
if ( h == -1 ) h = INF ;
G.addedge ( u , v , c , h ) ;
G.addedge ( v , u , c , h ) ;
}
scanf ( "%d%d%d" , &s , &t , &limit ) ;
int l = 0 , r = limit ;
while ( l < r ) {
int mid = ( l + r + 1 ) >> 1 ;
if ( G.dijkstra ( s , t , mid ) ) ans = G.d[t] , l = mid ;
else r = mid - 1 ;
}
if ( ~ans ) {
printf ( "maximum height = %d\n" , l ) ;
printf ( "length of shortest route = %d\n" , ans ) ;
} else printf ( "cannot reach destination\n" ) ;
}
int main () {
int cas = 0 ;
while ( ~scanf ( "%d%d" , &n , &m ) && ( n || m ) ) {
if ( cas ) printf ( "\n" ) ;
printf ( "Case %d:\n" , ++ cas ) ;
solve () ;
}
return 0 ;
}