题目分析:公式很好推,到最后就是C(n-1,0)*a[n]-C(n-1,1)*a[n-1]+C(n-1,2)*a[n-2]+...+C(n-1,n-1)*a[n]。
用C(n,k)=C(n,k-1)*(n-k+1)/k即可快速得到一行的二项式系数。
我看JAVA不到1000B 15分钟就能过。。。我又敲了大数模板然后将近2个小时才过T U T......
不过大数模板敲起来还是蛮爽的。。。就是暂时不能实现大数除法以及带负数的运算(仅限非负整数)
代码如下:
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std ;
#define REP( i , a , b ) for ( int i = a ; i < b ; ++ i )
#define FOR( i , a , b ) for ( int i = a ; i <= b ; ++ i )
#define REV( i , a , b ) for ( int i = a ; i >= b ; -- i )
#define CLR( a , x ) memset ( a , x , sizeof a )
#define CPY( a , x ) memcpy ( a , x , sizeof a )
const int L = 10000 ;
const int MAXN = 300 ;
struct BigInt {
int length , digit[MAXN] ;
BigInt ( int number = 0 ) {
CLR ( digit , 0 ) ;
length = 0 ;
while ( number ) {
digit[length ++] = number % L ;
number /= L ;
}
}
BigInt fix () {
while ( length && !digit[length - 1] )
-- length ;
return *this ;
}
BigInt operator = ( int number ) {
CLR ( digit , 0 ) ;
length = 0 ;
while ( number ) {
digit[length ++] = number % L ;
number /= L ;
}
return *this ;
}
int operator [] ( const int &index ) const {
return digit[index] ;
}
int & operator [] ( const int &index ) {
return digit[index] ;
}
BigInt operator + ( const BigInt &b ) const {
BigInt c ;
c.length = max ( length , b.length ) + 1 ;
int add = 0 ;
REP ( i , 0 , c.length ) {
add += digit[i] + b[i] ;
c[i] = add % L ;
add /= L ;
}
return c.fix () ;
}
BigInt operator - ( const BigInt &b ) const {
BigInt c ;
c.length = max ( length , b.length ) ;
int del = 0 ;
REP ( i , 0 , c.length ) {
del += digit[i] - b[i] ;
c[i] = del ;
del = 0 ;
if ( c[i] < 0 ) {
int tmp = ( -c[i] - 1 ) / L + 1 ;
c[i] += tmp * L ;
del -= tmp ;
}
}
return c.fix () ;
}
BigInt operator * ( const BigInt &b ) const {
BigInt c ;
c.length = length + b.length ;
REP ( i , 0 , length ) {
int mul = 0 ;
FOR ( j , 0 , b.length ) {
mul += digit[i] * b[j] + c[i + j] ;
c[i + j] = mul % L ;
mul /= L ;
}
}
return c.fix () ;
}
BigInt operator / ( const int &b ) const {
BigInt c ;
c.length = length ;
int over = 0 ;
REV ( i , length - 1 , 0 ) {
over = over * L + digit[i] ;
c[i] = over / b ;
over %= b ;
}
return c.fix () ;
}
BigInt operator += ( const BigInt &b ) {
*this = *this + b ;
return *this ;
}
BigInt operator -= ( const BigInt &b ) {
*this = *this - b ;
return *this ;
}
BigInt operator *= ( const BigInt &b ) {
*this = *this * b ;
return *this ;
}
BigInt operator /= ( const int &b ) {
*this = *this / b ;
return *this ;
}
bool operator < ( const BigInt &b ) const {
if ( length != b.length )
return length < b.length ;
REV ( i , length - 1 , 0 )
if ( digit[i] != b[i] )
return digit[i] < b[i] ;
return false ;
}
bool operator > ( const BigInt &b ) const {
return b < *this ;
}
bool operator <= ( const BigInt &b ) const {
return !( b < *this ) ;
}
bool operator >= ( const BigInt &b ) const {
return !( *this < b ) ;
}
bool operator != ( const BigInt &b ) const {
return b < *this || *this < b ;
}
bool operator == ( const BigInt &b ) const {
return !( b < *this ) && !( *this < b ) ;
}
} ;
int A[L] ;
void print ( const BigInt &res ) {
printf ( "%d" , res[res.length - 1] ) ;
REV ( i , res.length - 2 , 0 )
printf ( "%04d" , res[i] ) ;
printf ( "\n" ) ;
}
void solve () {
int n , nn ;
BigInt res = 0 , positive = 0 , negative = 0 , Cij = 1 ;
scanf ( "%d" , &n ) ;
REV ( i , n , 1 )
scanf ( "%d" , A + i ) ;
FOR ( i , 1 , n ) {
if ( i > 1 )
Cij = Cij * ( n - i + 1 ) / ( i - 1 ) ;
if ( i & 1 )
positive += Cij * A[i] ;
else
negative += Cij * A[i] ;
}
//print ( positive ) ;
//print ( negative ) ;
if ( positive < negative ) {
printf ( "-" ) ;
res = negative - positive ;
}
else
res = positive - negative ;
print ( res ) ;
}
int main () {
int T ;
scanf ( "%d" , &T ) ;
while ( T -- )
solve () ;
return 0 ;
}