CodeForces 404E Maze 1D

本文介绍了一种通过放置障碍物(石头)来优化机器人路径的方法,确保机器人最终停在一个未曾到达的位置。文章详细阐述了实现这一目标的算法思路,并提供了一个具体的C++实现代码示例。

题意:

一个机器人在数轴上的0点  给一串指令机器人按照指令走  为了使机器人最后一步走到一个从来没来过的位置  我们可以在数轴上放石头  每次机器人被石头卡住他就跳过当前的那个指令  问  最少使用石头前提下  一共几种放石头方法


思路:

很容易想到如果最后一个指令是L  那么机器人一定会停在0点的左边  因为如果停在右边  最后一步一定走在之前来过的位置上  同理最后一个指令是R

而且  放石头只有两种方案  放一个或不放!  因为放两个一定有一个石头没用

所以一开始先按没石头的方案走一遍  如果满足条件  那么就不用放石头输出答案1就好(因为保证放石头数最少)

如果不放石头不行  那么就要分类讨论  是放左边还是放右边

根据最后一个指令判断  如果是L  则一定停在0点左边  所以石头放右边  同理是R

这时可以二分放石头的位置来确定answer

因为  如果石头放在右边  3的位置上放石头满足条件  1、2位置一定也满足

理由就是1、2放石头一定可以使最后停下的位置比3放石头最后停下的位置还往左


代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define M 1001000

char str[M];
int vis[M*2];
__int64 ans;
int n,fl,fr;

bool yes(int stone)
{
    int i,j;
    memset(vis,0,sizeof(vis));
    for(i=0,j=M;i<n;i++)
    {
        vis[j]++;
        if(str[i]=='L'&&j-1!=stone) j--;
        if(str[i]=='R'&&j+1!=stone) j++;
    }
    if(vis[j]==0) return true;
    return false;
}

int main()
{
    int i,j,m;
    scanf("%s",str);
    n=strlen(str);
    for(i=0,j=fl=fr=M;i<n;i++)
    {
        vis[j]++;
        if(str[i]=='L')
        {
            j--;
            fl=min(fl,j);
        }
        else
        {
            j++;
            fr=max(fr,j);
        }
    }
    if(vis[j]==0)
    {
        printf("1\n");
        return 0;
    }
    //printf("%d %d \n",fl,fr);
    if(str[n-1]=='L')
    {
        i=M; j=fr+1;
        while(i<=j)
        {
            m=(i+j)/2;
            //printf("%d %d %d %d\n",i,j,m,yes(m));
            if(yes(m))
            {
                ans=m-M;
                i=m+1;
            }
            else j=m-1;
        }
    }
    else
    {
        i=fl-1; j=M;
        while(i<=j)
        {
            m=(i+j)/2;
            //printf("%d %d %d %d\n",i,j,m,yes(m));
            if(yes(m))
            {
                ans=M-m;
                j=m-1;
            }
            else i=m+1;
        }
    }
    printf("%I64d\n",ans);
	return 0;
}


### Codeforces 887E Problem Solution and Discussion The problem **887E - The Great Game** on Codeforces involves a strategic game between two players who take turns to perform operations under specific rules. To tackle this challenge effectively, understanding both dynamic programming (DP) techniques and bitwise manipulation is crucial. #### Dynamic Programming Approach One effective method to approach this problem utilizes DP with memoization. By defining `dp[i][j]` as the optimal result when starting from state `(i,j)` where `i` represents current position and `j` indicates some status flag related to previous moves: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = ...; // Define based on constraints int dp[MAXN][2]; // Function to calculate minimum steps using top-down DP int minSteps(int pos, bool prevMoveType) { if (pos >= N) return 0; if (dp[pos][prevMoveType] != -1) return dp[pos][prevMoveType]; int res = INT_MAX; // Try all possible next positions and update 'res' for (...) { /* Logic here */ } dp[pos][prevMoveType] = res; return res; } ``` This code snippet outlines how one might structure a solution involving recursive calls combined with caching results through an array named `dp`. #### Bitwise Operations Insight Another critical aspect lies within efficiently handling large integers via bitwise operators instead of arithmetic ones whenever applicable. This optimization can significantly reduce computation time especially given tight limits often found in competitive coding challenges like those hosted by platforms such as Codeforces[^1]. For detailed discussions about similar problems or more insights into solving strategies specifically tailored towards contest preparation, visiting forums dedicated to algorithmic contests would be beneficial. Websites associated directly with Codeforces offer rich resources including editorials written after each round which provide comprehensive explanations alongside alternative approaches taken by successful contestants during live events. --related questions-- 1. What are common pitfalls encountered while implementing dynamic programming solutions? 2. How does bit manipulation improve performance in algorithms dealing with integer values? 3. Can you recommend any online communities focused on discussing competitive programming tactics? 4. Are there particular patterns that frequently appear across different levels of difficulty within Codeforces contests?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值