Next Permutation

本文介绍了一个简单算法,用于求解整数数组的下一个字典序排列。如果不存在更大的排列,则将数组重新排列为最小的字典序排列。算法分为四步:找到最后一个升序对的位置,确定可交换的最大值,交换值并反转子数组。

Implement next permutation, which rearranges numbers into the lexicographically next greater permutation of numbers.

If such arrangement is not possible, it must rearrange it as the lowest possible order (ie, sorted in ascending order).

The replacement must be in-place and use only constant extra memory.

Here are some examples. Inputs are in the left-hand column and its corresponding outputs are in the right-hand column.

1,2,3 → 1,3,2
3,2,1 → 1,2,3
1,1,5 → 1,5,1

思路:According to Wikipedia, a man named Narayana Pandita presented the following simple algorithm to solve this problem in the 14th century.

  1. Find the largest index k such that nums[i] < nums[i + 1]. If no such index exists, just reverse nums and done.
  2. Find the largest index j > i such that nums[i] < nums[j].
  3. Swap nums[i] and nums[j].
  4. Reverse the sub-array nums[i + 1 ~ n - 1].
class Solution {
    public void nextPermutation(int[] nums) {
        int n = nums.length;
        int i = n - 2;
        for(; i >= 0; i--) {
            if(nums[i] < nums[i + 1]) {
                break;
            }
        }
        
        if(i < 0) {
            reverse(nums, 0, n - 1);
            return;
        }
        int j = n - 1;
        while(j > i) {
            if(nums[j] > nums[i]) {
                break;
            } else {
                j--;
            }
        }
        swap(nums, i, j);
        reverse(nums, i + 1, n - 1);
    }
    
    private void swap(int[] A, int i, int j) {
        int temp = A[i];
        A[i] = A[j];
        A[j] = temp;
    }
    
    private void reverse(int[] A, int start, int end) {
        while(start <= end) {
            swap(A, start, end);
            start++;
            end--;
        }
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值