Maximum Product Subarray

本文探讨了寻找具有最大乘积的连续子数组的问题,通过动态规划的方法,阐述了解决方案的实现细节。考虑到负数的存在,文章提出了在遇到负数时交换最大值和最小值的策略,以确保正确计算最大乘积。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given an integer array nums, find the contiguous subarray within an array (containing at least one number) which has the largest product.

Example 1:

Input: [2,3,-2,4]
Output: 6
Explanation: [2,3] has the largest product 6.

Example 2:

Input: [-2,0,-1]
Output: 0
Explanation: The result cannot be 2, because [-2,-1] is not a subarray.

思路:这题因为有负数,As we know that on multiplying with negative number max will become min and min will become max, so why not as soon as we encounter negative element, we swap the max and min already. Maximum Non Negative Product in a Matrix 一起看,思路一模一样;

class Solution {
    public int maxProduct(int[] nums) {
        int max = nums[0]; 
        int min = nums[0]; 
        int globalmax = nums[0];
        
        for(int i = 1; i < nums.length; i++) {
            if(nums[i] < 0) {
                int temp = max;
                max = min;
                min = temp;
            }
            max = Math.max(nums[i], max * nums[i]);
            min = Math.min(nums[i], min * nums[i]);
            
            globalmax = Math.max(globalmax, max);
        }
        return globalmax;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值