基于深度学习YOLOv5神经网络水果蔬菜检测识别系统,其能识别的水果蔬菜有15种,# 水果的种类 names: ['黑葡萄', '绿葡萄', '樱桃', '西瓜', '龙眼', '香蕉', '芒果', '菠萝', '柚子', '草莓', '苹果', '柑橘', '火龙果', '梨子', '花生', '黄瓜', '土豆', '大蒜', '茄子', '白萝卜', '辣椒', '胡萝卜', '花菜', '白菜', '番茄', '西蓝花', '橙子'],见如下
第一步:YOLOv5介绍
YOLOv5是一种目标检测算法,它是YOLO(You Only Look Once)系列的最新版本。YOLOv5在YOLOv4的基础上进行了改进和优化,以提高检测的准确性和速度。
YOLOv5采用了一些新的技术和方法来改进目标检测的性能。其中包括以下几个方面:
-
损失函数:YOLOv5使用了CIOU_Loss作为bounding box的损失函数。CIOU_Loss是一种改进的IOU_Loss,可以更好地衡量目标框的位置和大小。
-
非极大值抑制(NMS):YOLOv5使用NMS来抑制重叠的边界框,以减少重复检测的问题。
-
聚类anchors:YOLOv5使用k-means聚类算法来生成anchors,这些anchors用于检测不同尺度的目标。
总的来说,YOLOv5在YOLOv4的基础上进行了一些改进和优化,以提高目标检测的准确性和速度。
标注数据,YOLOv5的训练和测试步骤,可以参考我的这篇博客:手把手教你通过YOLOv5训练自己的目标检测模型_yolov5怎么测试自己训练的结果-优快云博客
第二步:YOLOv5网络结构