207. Course Schedule

本文介绍了一种算法,用于判断在存在先修课程约束的情况下是否能够完成所有课程。通过构建拓扑图并使用入度和出度的概念,文章提供了一个有效的方法来解决此问题。

There are a total of n courses you have to take, labeled from 0 to n-1.

Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]

Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses?

Example 1:

Input: 2, [[1,0]] 
Output: true
Explanation: There are a total of 2 courses to take. 
             To take course 1 you should have finished course 0. So it is possible.

Example 2:

Input: 2, [[1,0],[0,1]]
Output: false
Explanation: There are a total of 2 courses to take. 
             To take course 1 you should have finished course 0, and to take course 0 you should
             also have finished course 1. So it is impossible.

Note:

  1. The input prerequisites is a graph represented by a list of edges, not adjacency matrices. Read more about how a graph is represented.
  2. You may assume that there are no duplicate edges in the input prerequisites.

方法1:建立拓扑图,用一个vector和一个map,分别记录每个节点的入度,出度和所指向的节点

循环n次,每次查找入度为0的点,并将该点到其他点的边都去除

判断为false条件,在某一次循环过程中找不到入度为0的点

判断为true条件,走完n次循环(表明所有的节点都能简化为入度为0)

class Solution {
public:
    bool canFinish(int numCourses, vector<pair<int, int>>& prerequisites) {
        vector<int> indegree(numCourses,0);
        map<int,vector<int>> outdegree;
        for(auto val:prerequisites){
            indegree[val.first]++;
            outdegree[val.second].push_back(val.first);
        }
        for(int i=0,j;i<numCourses;i++){
            for(j=0;j<numCourses;j++){
                if(indegree[j]==0) break;
            }
            if(j==numCourses) return false;
            indegree[j]--;
            for(auto a:outdegree[j]) indegree[a]--;
        }
        return true;
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值