deeplabv3+二:详细代码解读 data generator 数据生成器

本文详细解析 DeeplabV3+ 数据生成器 `data_generator.py`,介绍了数据处理流程,包括从数据库分析、数据预处理到生成迭代器的过程。关键类 `Dataset` 中的方法如 `_parse_function()` 和 `_preprocess_image()`,以及如何使用 `TFRecordDataset` 创建数据流。数据预处理涉及图片和标签的转换、尺寸调整、随机增强等操作,最终形成适配网络输入的数据格式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

3+支持三种数据库,voc2012,cityscapes,ade20k,

代码文件夹

-deeplab

    -datasets

         -data_generator.py

在开始之前,始终记住,网络模型的输入是非常简单的image,规格化到[-1,1]或[0,1],或者数据扩增(水平翻转,随机裁剪,明暗变化,模糊),以及一个实施了相同数据扩增的label(毕竟需要pixel对上),test的话只需要一个image。是非常简单的数据格式,也许程序员会为了存储的压缩量以及读取处理的速度(指的就是使用tf.example 与 tf.record)写复杂的代码,但是最终的结果始终都是很简单的。

觉得自己一定要先搞清楚tf.example 与tf.record:https://zhuanlan.zhihu.com/p/33223782

 

目录

数据库分析

代码重点类Dataset

1.方法_parse_function()

2. 方法_preprocess_image()

2.1 input_preprocess的preprocess_image_and_label方法介绍

3.方法 _get_all_files(self):

4.方法 get_one_shot_iterator(self)

Class TFRecordDataset

代码使用是在train.py里面:


代码:先放代码,你可以尝试自己看,看得懂就不用往下翻浪费时间了。

# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Wrapper for providing semantic segmentaion data.

The SegmentationDataset class provides both images and annotations (semantic
segmentation and/or instance segmentation) for TensorFlow. Currently, we
support the following datasets:

1. PASCAL VOC 2012 (http://host.robots.ox.ac.uk/pascal/VOC/voc2012/).

PASCAL VOC 2012 semantic segmentation dataset annotates 20 foreground objects
(e.g., bike, person, and so on) and leaves all the other semantic classes as
one background class. The dataset contains 1464, 1449, and 1456 annotated
images for the training, validation and test respectively.

2. Cityscapes dataset (https://www.cityscapes-dataset.com)

The Cityscapes dataset contains 19 semantic labels (such as road, person, car,
and so on) for urban street scenes.

3. ADE20K dataset (http://groups.csail.mit.edu/vision/datasets/ADE20K)

The ADE20K dataset contains 150 semantic labels both urban street scenes and
indoor scenes.

References:
  M. Everingham, S. M. A. Eslami, L. V. Gool, C. K. I. Williams, J. Winn,
  and A. Zisserman, The pascal visual object classes challenge a retrospective.
  IJCV, 2014.

  M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,
  U. Franke, S. Roth, and B. Schiele, "The cityscapes dataset for semantic urban
  scene understanding," In Proc. of CVPR, 2016.

  B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, A. Torralba, "Scene Parsing
  through ADE20K dataset", In Proc. of CVPR, 2017.
"""

import collections
import os
import tensorflow as tf
from deeplab import common
from deeplab import input_preprocess

# Named tuple to describe the dataset properties.
DatasetDescriptor = collections.namedtuple(
    'DatasetDescriptor',
    [
        'splits_to_sizes',  # Splits of the dataset into training, val and test.
        'num_classes',  # Number of semantic classes, including the
                        # background class (if exists). For example, there
                        # are 20 foreground classes + 1 background class in
                        # the PASCAL VOC 2012 dataset. Thus, we set
                        # num_classes=21.
        'ignore_label',  # Ignore label value.
    ])

_CITYSCAPES_INFORMATION = DatasetDescriptor(
    splits_to_sizes={
        'train': 2975,
        'val': 500,
    },
    num_classes=19,
    ignore_label=255,
)

_PASCAL_VOC_SEG_INFORMATION = DatasetDescriptor(
    splits_to_sizes={
        'train': 1464,
        'train_aug': 10582,
        'trainval': 2913,
        'val': 1449,
    },
    num_classes=21,
    ignore_label=255,
)

_ADE20K_INFORMATION = DatasetDescriptor(
    splits_to_sizes={
        'train': 20210,  # num of samples in images/training
        'val': 2000,  # num of samples in images/validation
    },
    num_classes=151,
    ignore_label=0,
)

_DATASETS_INFORMATION = {
    'cityscapes': _CITYSCAPES_INFORMATION,
    'pascal_voc_seg': _PASCAL_VOC_SEG_INFORMATION,
    'ade20k': _ADE20K_INFORMATION,
}

# Default file pattern of TFRecord of TensorFlow Example.
_FILE_PATTERN = '%s-*'


def get_cityscapes_dataset_name():
  return 'cityscapes'


class Dataset(object):
  """Represents input dataset for deeplab model."""

  def __init__(self,
               dataset_name,
               split_name,
               dataset_dir,
               batch_size,
               crop_size,
               min_resize_value=None,
               max_resize_value=None,
               resize_factor=None,
               min_scale_factor=1.,
               max_scale_factor=1.,
               scale_factor_step_size=0,
               model_variant=None,
               num_readers=1,
               is_training=False,
               should_shuffle=False,
               should_repeat=False):
    """Initializes the dataset.

    Args:
      dataset_name: Dataset name.
      split_name: A train/val Split name.
      dataset_dir: The directory of the dataset sources.
      batch_size: Batch size.
      crop_size: The size used to crop the image and label.
      min_resize_value: Desired size of the smaller image side.
      max_resize_value: Maximum allowed size of the larger image side.
      resize_factor: Resized dimensions are multiple of factor plus one.
      min_scale_factor: Minimum scale factor value.
      max_scale_factor: Maximum scale factor value.
      scale_factor_step_size: The step size from min scale factor to max scale
        factor. The input is randomly scaled based on the value of
        (min_scale_factor, max_scale_factor, scale_factor_step_size).
      model_variant: Model variant (string) for choosing how to mean-subtract
        the images. 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值