2015 Multi-University Training Contest 1 Hdu5288 OO’s Sequence

本文详细介绍了如何解决OO序列中关于非互质数的复杂问题,通过筛法与枚举技巧,实现高效计算,特别适合大规模数据集的处理。

OO’s Sequence

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 449    Accepted Submission(s): 158


Problem Description
OO has got a array A of size n ,defined a function f(l,r) represent the number of i (l<=i<=r) , that there's no j(l<=j<=r,j<>i) satisfy a i mod a j=0,now OO want to know
i=1nj=inf(i,j) mod 109+7.

 

Input
There are multiple test cases. Please process till EOF.
In each test case: 
First line: an integer n(n<=10^5) indicating the size of array
Second line:contain n numbers a i(0<a i<=10000)
 

Output
For each tests: ouput a line contain a number ans.
 

Sample Input
  
5 1 2 3 4 5
 

Sample Output
  
23
 

Source
 


水题,筛法+枚举i

两个数组,L[i]记录离i最近的非互质的j<i,R[i]记录离i最近的非互质的i<j,通过枚举A[i],ans+=(R[i]-i+1)*(i-L[i]+1)/2 %MOD

#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
long long n;
long long d[10005];
long long a[100005];
long long l[100005];
long long r[100005];
#define MOD 1000000007
int main()
{
    while(~scanf("%lld",&n))
    {
        for(long long i = 0;i<n;i++)
            scanf("%lld",a+i);
        for(long long i = 1;i<=10000;i++)d[i] = -1;
        for(long long i = 0;i<n;i++)
        {
            long long tmp = -1;
            for(long long t = 1;t*t<=a[i];t++)
                if(a[i]%t==0)
            {
                tmp = max(tmp,d[t]);
                tmp = max(tmp,d[a[i]/t]);
            }
            tmp = max(tmp,d[a[i]]);
            l[i] = tmp+1;
            for(long long t = a[i];t<=10000;t+=a[i])
                d[t] = i;
        }
        for(long long i = 1;i<=10000;i++)d[i] = n;
        for(long long i = n-1;i>=0;i--)
        {
            long long tmp = n;
            for(long long t = 1;t*t<=a[i];t++)
                if(a[i]%t==0)
            {
                tmp = min(tmp,d[t]);
                tmp = min(tmp,d[a[i]/t]);
            }
            tmp = min(tmp,d[a[i]]);
            r[i] = tmp-1;
            for(long long t = a[i];t<=10000;t+=a[i])
                d[t] = i;
        }
        long long ans = 0;
        for(long long i = 0;i<n;i++)
            {
                ans=(ans + (r[i]-i+1)*(i-l[i]+1))%MOD;
               // cout<<i<<":"<<l[i]<<" "<<r[i]<<endl;
            }
        printf("%lld\n",ans);
    }
}



评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值