The Water Problem(RMQ)

The Water Problem


Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 1634    Accepted Submission(s): 1245

Problem Description
In Land waterless, water is a very limited resource. People always fight for the biggest source of water. Given a sequence of water sources with a1,a2,a3,...,an representing the size of the water source. Given a set of queries each containing 2 integers l and r , please find out the biggest water source between al and ar .
 
Input
First you are given an integer T(T10) indicating the number of test cases. For each test case, there is a number n(0n1000) on a line representing the number of water sources. n integers follow, respectively a1,a2,a3,...,an , and each integer is in {1,...,106} . On the next line, there is a number q(0q1000) representing the number of queries. After that, there will be q lines with two integers l and r(1lrn) indicating the range of which you should find out the biggest water source.

Output
For each query, output an integer representing the size of the biggest water source.


Sample Input
3
1
100
1
1 1
5
1 2 3 4 5
5
1 2
1 3
2 4
3 4
3 5
3
1 999999 1
4
1 1
1 2
2 3
3 3

Sample Output
100
2
3
4
4
5
1
999999
999999
1

题源:2015亚洲赛区长春网络赛
题目分析:区间求最大值。RMQ,模板题。
AC代码:
#include <iostream>
#include <cmath>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#define maxn 10005
using namespace std;
int maxSum[maxn][20];

void RMQ(int num)    //预处理->O(nlogn)
{
   for(int j = 1;j < 20;j++)
   {
       for(int i = 1;i <= num;i++)
       {
           if((i + (1 << j) - 1) <= num)//区间长度要满足总数条件
           {
               maxSum[i][j] = max(maxSum[i][j - 1],maxSum[i + (1 << (j - 1))][j - 1]);
           }
       }
   }
}

int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
        {
            int num,query;
        int src,des;
        scanf("%d",&num);
        for(int i = 1;i <= num;i++)
        {
            scanf("%d",&maxSum[i][0]);//表示从第i个数起连续2^0(1)个数,即就是这第i个数
        }
        RMQ(num);
        scanf("%d",&query);
        while(query--)//O(1)查询
        {
            scanf("%d %d",&src,&des);
            int k = (int)(log(des - src + 1.0) / log(2.0));//中间位置
            int ansMax = max(maxSum[src][k],maxSum[des - (1 << k) + 1][k]);
            printf("%d\n",ansMax);
        }
    }

    return 0;
}


【完美复现】面向配电网韧性提升的移动储能预布局与动态调度策略【IEEE33节点】(Matlab代码实现)内容概要:本文介绍了基于IEEE33节点的配电网韧性提升方法,重点研究了移动储能系统的预布局与动态调度策略。通过Matlab代码实现,提出了一种结合预配置和动态调度的两阶段优化模型,旨在应对电网故障或极端事件时快速恢复供电能力。文中采用了多种智能优化算法(如PSO、MPSO、TACPSO、SOA、GA等)进行对比分析,验证所提策略的有效性和优越性。研究不仅关注移动储能单元的初始部署位置,还深入探讨其在故障发生后的动态路径规划与电力支援过程,从而全面提升配电网的韧性水平。; 适合人群:具备电力系统基础知识和Matlab编程能力的研究生、科研人员及从事智能电网、能源系统优化等相关领域的工程技术人员。; 使用场景及目标:①用于科研复现,特别是IEEE顶刊或SCI一区论文中关于配电网韧性、应急电源调度的研究;②支撑电力系统在灾害或故障条件下的恢复力优化设计,提升实际电网应对突发事件的能力;③为移动储能系统在智能配电网中的应用提供理论依据和技术支持。; 阅读建议:建议读者结合提供的Matlab代码逐模块分析,重点关注目标函数建模、约束条件设置以及智能算法的实现细节。同时推荐参考文中提及的MPS预配置与动态调度上下两部分,系统掌握完整的技术路线,并可通过替换不同算法或测试系统进一步拓展研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值