Mr. Kitayuta has just bought an undirected graph consisting of n vertices and m edges. The vertices of the graph are numbered from 1 to n. Each edge, namely edge i, has a color ci, connecting vertex ai and bi.
Mr. Kitayuta wants you to process the following q queries.
In the i-th query, he gives you two integers — ui and vi.
Find the number of the colors that satisfy the following condition: the edges of that color connect vertex ui and vertex vi directly or indirectly.
The first line of the input contains space-separated two integers — n and m (2 ≤ n ≤ 100, 1 ≤ m ≤ 100), denoting the number of the vertices and the number of the edges, respectively.
The next m lines contain space-separated three integers — ai, bi (1 ≤ ai < bi ≤ n) and ci (1 ≤ ci ≤ m). Note that there can be multiple edges between two vertices. However, there are no multiple edges of the same color between two vertices, that is, if i ≠ j, (ai, bi, ci) ≠ (aj, bj, cj).
The next line contains a integer — q (1 ≤ q ≤ 100), denoting the number of the queries.
Then follows q lines, containing space-separated two integers — ui and vi (1 ≤ ui, vi ≤ n). It is guaranteed that ui ≠ vi.
For each query, print the answer in a separate line.
4 5 1 2 1 1 2 2 2 3 1 2 3 3 2 4 3 3 1 2 3 4 1 4
2 1 0
5 7 1 5 1 2 5 1 3 5 1 4 5 1 1 2 2 2 3 2 3 4 2 5 1 5 5 1 2 5 1 5 1 4
1 1 1 1 2
Let's consider the first sample.

- Vertex 1 and vertex 2 are connected by color 1 and 2.
- Vertex 3 and vertex 4 are connected by color 3.
- Vertex 1 and vertex 4 are not connected by any single color.
图的拆分加并查集。
根据颜色将图进行拆分,然后并查集查找连通的数量
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int pre[110][110];
int find(int *pre,int x){
while(x!=pre[x]){
x = pre[x];
}
return x;
}
int main(){
int n,m,u,v,c;
int pre_u,pre_v;
while(~scanf("%d%d",&n,&m)){
for(int i=1;i<=m;i++){
for(int j = 1;j<=n;j++)
pre[i][j] = j;
}
for(int i =1;i<=m;i++){
scanf("%d%d%d",&u,&v,&c);
pre_u = find(pre[c],u);
pre_v = find(pre[c],v);
if(pre_u!=pre_v)pre[c][pre_u] = pre_v;
}
int num;
scanf("%d",&num);
while(num--){
int s = 0;
scanf("%d%d",&u,&v);
for(int i=1;i<=m;i++){
pre_u = find(pre[i],u);
pre_v = find(pre[i],v);
//printf("%d %d\n",pre_u,pre_v);
if(pre_u == pre_v)s++;
}
printf("%d\n",s);
}
}
}