505B. Mr. Kitayuta's Colorful Graph(拆分图+并查集)

本文介绍了一个基于图论的问题,即如何在一个拥有多种颜色边的无向图中,针对特定顶点对查询连接它们的不同颜色数量。通过使用并查集算法进行图的拆分,文章详细解释了处理这一问题的具体步骤及其实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

                                                                                                         B. Mr. Kitayuta's Colorful Graph
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Mr. Kitayuta has just bought an undirected graph consisting of n vertices and m edges. The vertices of the graph are numbered from 1 to n. Each edge, namely edge i, has a color ci, connecting vertex ai and bi.

Mr. Kitayuta wants you to process the following q queries.

In the i-th query, he gives you two integers — ui and vi.

Find the number of the colors that satisfy the following condition: the edges of that color connect vertex ui and vertex vi directly or indirectly.

Input

The first line of the input contains space-separated two integers — n and m (2 ≤ n ≤ 100, 1 ≤ m ≤ 100), denoting the number of the vertices and the number of the edges, respectively.

The next m lines contain space-separated three integers — ai, bi (1 ≤ ai < bi ≤ n) and ci (1 ≤ ci ≤ m). Note that there can be multiple edges between two vertices. However, there are no multiple edges of the same color between two vertices, that is, if i ≠ j, (ai, bi, ci) ≠ (aj, bj, cj).

The next line contains a integer — q (1 ≤ q ≤ 100), denoting the number of the queries.

Then follows q lines, containing space-separated two integers — ui and vi (1 ≤ ui, vi ≤ n). It is guaranteed that ui ≠ vi.

Output

For each query, print the answer in a separate line.

Sample test(s)
Input
4 5
1 2 1
1 2 2
2 3 1
2 3 3
2 4 3
3
1 2
3 4
1 4
Output
2
1
0
Input
5 7
1 5 1
2 5 1
3 5 1
4 5 1
1 2 2
2 3 2
3 4 2
5
1 5
5 1
2 5
1 5
1 4
Output
1
1
1
1
2
Note

Let's consider the first sample.

The figure above shows the first sample.
  • Vertex 1 and vertex 2 are connected by color 1 and 2.
  • Vertex 3 and vertex 4 are connected by color 3.
  • Vertex 1 and vertex 4 are not connected by any single color.


图的拆分加并查集。

根据颜色将图进行拆分,然后并查集查找连通的数量


#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;

int pre[110][110];

int find(int *pre,int x){
 while(x!=pre[x]){
  x =  pre[x];
 }
 return x;
}
int main(){
 int n,m,u,v,c;
 int pre_u,pre_v;
 while(~scanf("%d%d",&n,&m)){
  for(int i=1;i<=m;i++){
   for(int j = 1;j<=n;j++)
   pre[i][j] = j;
  }
  
  for(int i =1;i<=m;i++){
   scanf("%d%d%d",&u,&v,&c);
    pre_u = find(pre[c],u);
    pre_v = find(pre[c],v);
   if(pre_u!=pre_v)pre[c][pre_u] = pre_v;
  }
  int num;
  scanf("%d",&num);
  while(num--){
   int s = 0;
   scanf("%d%d",&u,&v);
   for(int i=1;i<=m;i++){
    pre_u = find(pre[i],u);
    pre_v = find(pre[i],v);
    //printf("%d %d\n",pre_u,pre_v);
    if(pre_u == pre_v)s++;
   }
   printf("%d\n",s);
  }
 }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值