Mr. Kitayuta has just bought an undirected graph with n vertices and m edges. The vertices of the graph are numbered from 1 to n. Each edge, namely edge i, has a color ci, connecting vertex ai and bi.
Mr. Kitayuta wants you to process the following q queries.
In the i-th query, he gives you two integers - ui and vi.
Find the number of the colors that satisfy the following condition: the edges of that color connect vertex ui and vertex vi directly or indirectly.
The first line of the input contains space-separated two integers - n and m(2 ≤ n ≤ 105, 1 ≤ m ≤ 105), denoting the number of the vertices and the number of the edges, respectively.
The next m lines contain space-separated three integers - ai, bi(1 ≤ ai < bi ≤ n) and ci(1 ≤ ci ≤ m). Note that there can be multiple edges between two vertices. However, there are no multiple edges of the same color between two vertices, that is, if i ≠ j, (ai, bi, ci) ≠ (aj, bj, cj).
The next line contains a integer- q(1 ≤ q ≤ 105), denoting the number of the queries.
Then follows q lines, containing space-separated two integers - ui and vi(1 ≤ ui, vi ≤ n). It is guaranteed that ui ≠ vi.
For each query, print the answer in a separate line.
4 5 1 2 1 1 2 2 2 3 1 2 3 3 2 4 3 3 1 2 3 4 1 4
2 1 0
5 7 1 5 1 2 5 1 3 5 1 4 5 1 1 2 2 2 3 2 3 4 2 5 1 5 5 1 2 5 1 5 1 4
1 1 1 1 2
Let's consider the first sample.

- Vertex 1 and vertex 2 are connected by color 1 and 2.
- Vertex 3 and vertex 4 are connected by color 3.
- Vertex 1 and vertex 4 are not connected by any single color.
题意:有n个点和m条路,每条路都有固定的颜色,给你q次询问,问点u->v有几种走法,每次只能沿一种颜色走。
思路:根据数据的范围,用并查集,可将相同颜色道路所连得点合并,我自己写的代码比较搓,耗时也高,就贴一位大神的代码,其中的M我不知道为啥要分情况讨论,后来才知道妙处
代码://436 ms 8500 KB
#include<cstdio>
#include<algorithm>
#include<vector>
#include<map>
#define N 100100
#define M 300
using namespace std;
int f[N],ans[N];
pair<int,int> q[N];
vector<pair<int,int> > col[N],total;
map<pair<int,int>,int> light;
int find(int x)
{
if(f[x]==x) return x;
return f[x]=find(f[x]);
}
void uni(int x,int y)
{
if(find(x)==find(y)) return;
f[find(x)]=find(y);
}
int main()
{
int n,m,a,b,c,i,j,k,l;
scanf("%d%d",&n,&m);
for(i=0; i<m; i++)
{
scanf("%d%d%d",&a,&b,&c);
col[c].push_back(make_pair(a,b));//col[c][i]中存着c颜色道路的a,b点信息
}
scanf("%d",&k);
for(i=0; i<k; i++)
{
scanf("%d%d",&q[i].first,&q[i].second);
if(q[i].first>q[i].second) swap(q[i].first,q[i].second);
light[q[i]]=0;
}
for(i=1; i<=m; i++)
{
if(col[i].size()<M)//这里的分情况讨论能大大缩短一些样例的时间
{
vector<int> vertex;
for(j=0; j<col[i].size(); j++)
{
vertex.push_back(col[i][j].first);
vertex.push_back(col[i][j].second);
}
sort(vertex.begin(),vertex.end());//都先将同一颜色的点放入集合中,排序并去重用做查找,再用并查集合并道路两定点,最后计算
vertex.resize(unique(vertex.begin(),vertex.end())-vertex.begin());
for(j=0; j<vertex.size(); j++)
{
f[vertex[j]]=vertex[j];
}
for(j=0; j<col[i].size(); j++)
{
uni(col[i][j].first,col[i][j].second);
}
for(j=0; j<vertex.size(); j++)//这里的复杂度有O(n^n)所以点数不能太大
{
for(l=j+1; l<vertex.size(); l++)
{
if(find(vertex[j])!=find(vertex[l])) continue;
if(light.count(make_pair(vertex[j],vertex[l])))
{
light[make_pair(vertex[j],vertex[l])]++;
}
}
}
}
else
{
for(j=1; j<=n; j++) f[j]=j;
for(j=0; j<col[i].size(); j++)
{
uni(col[i][j].first,col[i][j].second);
}
for(j=0; j<k; j++)//这里复杂度就是max(O(n),O(k) ),而最大10^5,当集合顶点多时候可在k个q询问中寻找
{
if(find(q[j].first)==find(q[j].second)) ans[j]++;
}
}
}
for(i=0; i<k; i++)
{
printf("%d\n",light[q[i]]+ans[i]);
}
return 0;
}