【Pytorch】分类

本文介绍了一个使用ResNet18模型进行图像分类任务的PyTorch实现案例。通过自定义数据集加载器,实现了从本地文件读取图像数据并进行预处理。文章详细展示了模型训练过程,包括超参数设置、数据增强、训练与验证流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Train 

下面如果想修改为自己的数据进行输入,只需要修改CellDataset类

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import argparse
from resnet import ResNet18
import torch.utils.data as data
from skimage import io
from PIL import Image
import torchvision.models as models
from torchvision.models.resnet import *


class CellDataset(data.Dataset):
    """Face Landmarks dataset."""

    def __init__(self, data_file, transform=None):
        """
        Args:
            csv_file (string): Path to the csv file with annotations.
            root_dir (string): Directory with all the images.
            transform (callable, optional): Optional transform to be applied
                on a sample.
        """
        data_lists = []
        mark_lists = []
        with open(data_file) as f:
            for line in f.readlines():
                file_path, mark = line.split(" ")
                data_lists.append(file_path)
                mark_lists.append(int(mark.split("\\")[0]))
        self.cell_lists = data_lists
        self.mark_lists = mark_lists
        self.transform = transform

    def __len__(self):
        return len(self.cell_lists)

    def __getitem__(self, index):
        img_name = self.cell_lists[index]
        image = io.imread(img_name)
        # image = transform.resize(image,(256,256))
        mark = self.mark_lists[index]
        # print(mark)
        # sample = [image, mark]

        image = Image.fromarray(image)

        if self.transform is not None:
            image = self.transform(image)

        return image, mark



# 定义是否使用GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 参数设置,使得我们能够手动输入命令行参数,就是让风格变得和Linux命令行差不多
parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training')
parser.add_argument('--outf', default='./model/', help='folder to output images and model checkpoints') #输出结果保存路径
parser.add_argument('--net', default='./model/Resnet18.pth', help="path to net (to continue training)")  #恢复训练时的模型路径
args = parser.parse_args()

# 超参数设置
EPOCH = 135   #遍历数据集次数
pre_epoch = 0  # 定义已经遍历数据集的次数
BATCH_SIZE = 32     #批处理尺寸(batch_size)
LR = 0.1        #学习率



# 准备数据集并预处理
transform_train = transforms.Compose([
    # transforms.RandomCrop(32, padding=4),  #先四周填充0,在吧图像随机裁剪成32*32
    transforms.Resize((128, 128)),
    transforms.RandomHorizontalFlip(),  #图像一半的概率翻转,一半的概率不翻转
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), #R,G,B每层的归一化用到的均值和方差
])

transform_test = transforms.Compose([
    transforms.Resize((128,128)),
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])

trainset = CellDataset(r"D:\smj\myproject\pytorch_classification\data\train.txt", transform=transform_train)
# trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train) #训练数据集
trainloader = torch.utils.data.DataLoader(trainset, batch_size=BATCH_SIZE, shuffle=True, num_workers=2)   #生成一个个batch进行批训练,组成batch的时候顺序打乱取

testset = CellDataset(r"D:\smj\myproject\pytorch_classification\data\test.txt", transform=transform_test)
# testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=1, shuffle=False, num_workers=2)
# Cifar-10的标签
classes = ('0', '1')

# 模型定义-ResNet
net = ResNet18().to(device)
# print(net)

# 定义损失函数和优化方式
criterion = nn.CrossEntropyLoss()  #损失函数为交叉熵,多用于多分类问题
optimizer = optim.SGD(net.parameters(), lr=LR, momentum=0.9, weight_decay=5e-4) #优化方式为mini-batch momentum-SGD,并采用L2正则化(权重衰减)

# 训练
if __name__ == "__main__":
    best_acc = 85  #2 初始化best test accuracy
    print("Start Training, Resnet-18!")  # 定义遍历数据集的次数
    with open("acc.txt", "w") as f:
        with open("log.txt", "w")as f2:
            for epoch in range(pre_epoch, EPOCH):
                print('\nEpoch: %d' % (epoch + 1))
                net.train()
                sum_loss = 0.0
                correct = 0.0
                total = 0.0
                for i, data in enumerate(trainloader, 0):
                    # 准备数据
                    length = len(trainloader)
                    inputs, labels = data
                    inputs, labels = inputs.to(device), labels.to(device)
                    optimizer.zero_grad()

                    # forward + backward
                    outputs = net(inputs)
                    loss = criterion(outputs, labels)
                    loss.backward()
                    optimizer.step()

                    # 每训练1个batch打印一次loss和准确率
                    sum_loss += loss.item()
                    _, predicted = torch.max(outputs.data, 1)
                    total += labels.size(0)
                    correct += predicted.eq(labels.data).cpu().sum()
                    print('[epoch:%d, iter:%d] Loss: %.03f | Acc: %.3f%% '
                          % (epoch + 1, (i + 1 + epoch * length), sum_loss / (i + 1), 100. * correct / total))
                    f2.write('%03d  %05d |Loss: %.03f | Acc: %.3f%% '
                          % (epoch + 1, (i + 1 + epoch * length), sum_loss / (i + 1), 100. * correct / total))
                    f2.write('\n')
                    f2.flush()

                # 每训练完一个epoch测试一下准确率
                print("Waiting Test!")
                with torch.no_grad():
                    correct = 0
                    total = 0
                    for data in testloader:
                        net.eval()
                        images, labels = data
                        images, labels = images.to(device), labels.to(device)
                        outputs = net(images)
                        # 取得分最高的那个类 (outputs.data的索引号)
                        _, predicted = torch.max(outputs.data, 1)
                        total += labels.size(0)
                        correct += (predicted == labels).sum()
                    print('测试分类准确率为:%.3f%%' % (100 * correct / total))
                    acc = 100. * correct / total
                    # 将每次测试结果实时写入acc.txt文件中
                    print('Saving model......')
                    torch.save(net.state_dict(), '%s/resnet_%03d.pth' % (args.outf, epoch + 1))
                    f.write("EPOCH=%03d,Accuracy= %.3f%%" % (epoch + 1, acc))
                    f.write('\n')
                    f.flush()
                    # 记录最佳测试分类准确率并写入best_acc.txt文件中
                    if acc > best_acc:
                        f3 = open("best_acc.txt", "w")
                        f3.write("EPOCH=%d,best_acc= %.3f%%" % (epoch + 1, acc))
                        f3.close()
                        best_acc = acc
            print("Training Finished, TotalEPOCH=%d" % EPOCH)

代码中的train.txt为:

D:\smj\myproject\pytorch_classification\data\train\0\1.png 0
D:\smj\myproject\pytorch_classification\data\train\0\2.png 0
D:\smj\myproject\pytorch_classification\data\train\0\3.png 0
D:\smj\myproject\pytorch_classification\data\train\0\4.png 0
D:\smj\myproject\pytorch_classification\data\train\0\5.png 0

Test

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import argparse
from resnet import ResNet18
import torch.utils.data as data
from skimage import io
from PIL import Image
import torchvision.models as models
from torchvision.models.resnet import *
import time


class CellDataset(data.Dataset):
    """Face Landmarks dataset."""

    def __init__(self, data_file, transform=None):
        """
        Args:
            csv_file (string): Path to the csv file with annotations.
            root_dir (string): Directory with all the images.
            transform (callable, optional): Optional transform to be applied
                on a sample.
        """
        data_lists = []
        mark_lists = []
        with open(data_file) as f:
            for line in f.readlines():
                file_path, mark = line.split(" ")
                data_lists.append(file_path)
                mark_lists.append(int(mark.split("\\")[0]))
        self.cell_lists = data_lists
        self.mark_lists = mark_lists
        self.transform = transform

    def __len__(self):
        return len(self.cell_lists)

    def __getitem__(self, index):
        img_name = self.cell_lists[index]
        image = io.imread(img_name)
        # image = transform.resize(image,(256,256))
        mark = self.mark_lists[index]
        # print(mark)
        # sample = [image, mark]

        image = Image.fromarray(image)

        if self.transform is not None:
            image = self.transform(image)

        return image, mark



# 定义是否使用GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 参数设置,使得我们能够手动输入命令行参数,就是让风格变得和Linux命令行差不多
parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training')
parser.add_argument('--outf', default='./model/', help='folder to output images and model checkpoints') #输出结果保存路径
parser.add_argument('--net', default='./model/Resnet18.pth', help="path to net (to continue training)")  #恢复训练时的模型路径
args = parser.parse_args()

# 超参数设置
EPOCH = 135   #遍历数据集次数
pre_epoch = 0  # 定义已经遍历数据集的次数
BATCH_SIZE = 32     #批处理尺寸(batch_size)
LR = 0.1        #学习率


# 准备数据集并预处理
transform_train = transforms.Compose([
    # transforms.RandomCrop(32, padding=4),  #先四周填充0,在吧图像随机裁剪成32*32
    transforms.Resize((128, 128)),
    transforms.RandomHorizontalFlip(),  #图像一半的概率翻转,一半的概率不翻转
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), #R,G,B每层的归一化用到的均值和方差
])

transform_test = transforms.Compose([
    transforms.Resize((128,128)),
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])

trainset = CellDataset(r"D:\smj\myproject\pytorch_classification\data\train.txt", transform=transform_train)
# trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train) #训练数据集
trainloader = torch.utils.data.DataLoader(trainset, batch_size=BATCH_SIZE, shuffle=True, num_workers=2)   #生成一个个batch进行批训练,组成batch的时候顺序打乱取

testset = CellDataset(r"D:\smj\myproject\pytorch_classification\data\test.txt", transform=transform_test)
# testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=48, shuffle=False, num_workers=2)
# Cifar-10的标签
classes = ('0', '1')

# 模型定义-ResNet
net = ResNet18().to(device)
# print(net)

# 定义损失函数和优化方式
criterion = nn.CrossEntropyLoss()  #损失函数为交叉熵,多用于多分类问题
optimizer = optim.SGD(net.parameters(), lr=LR, momentum=0.9, weight_decay=5e-4) #优化方式为mini-batch momentum-SGD,并采用L2正则化(权重衰减)

# 训练
if __name__ == "__main__":
    best_acc = 85  #2 初始化best test accuracy
    # 每训练完一个epoch测试一下准确率
    net.load_state_dict(torch.load(r"./model/resnet_053.pth"))
    print("Waiting Test!")
    start_time = time.time()
    with torch.no_grad():
        correct = 0
        total = 0
        for data in testloader:
            net.eval()
            images, labels = data
            images, labels = images.to(device), labels.to(device)
            outputs = net(images)
            # 取得分最高的那个类 (outputs.data的索引号)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum()
        print('测试分类准确率为:%.3f%%' % (100 * correct / total))
        acc = 100. * correct / total
    end_time = time.time()
    print(end_time - start_time)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值