希尔排序
传统的插入排序算法在某些场景中存在着一些问题,例如[2,3,4,5,1]这样的一个数组,当我们对其进行插入排序的时候,发现要插入的数字是1,而要想将1插入到最前面,需要经过四个步骤,分别将5、4、3、2后移。所以得出结论:如果较小的数是我们需要进行插入的数,那效率就会比较低。鉴于这种场景的缺陷,希尔排序诞生了,它是插入排序的一种更高效的版本。
先看看希尔排序的概念:
希尔排序(Shell’s Sort)是插入排序的一种又称“缩小增量排序”(Diminishing Increment Sort),是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。该方法因D.L.Shell于1959年提出而得名。
希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。
————————————————
希尔排序,也称递减增量排序算法,是插入排序的一种更高效的改进版本。但希尔排序是非稳定排序算法。
希尔排序是基于插入排序的以下两点性质而提出改进方法的:
-
插入排序在对几乎已经排好序的数据操作时,效率高,即可以达到线性排序的效率;
-
但插入排序一般来说是低效的,因为插入排序每次只能将数据移动一位;
希尔排序的基本思想是:先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,待整个序列中的记录“基本有序”时,再对全体记录进行依次直接插入排序。
1. 算法步骤
-
选择一个增量序列 t1,t2,……,tk,其中 ti > tj, tk = 1;
-
按增量序列个数 k,对序列进行 k 趟排序;
-
每趟排序,根据对应的增量 ti,将待排序列分割成若干长度为 m 的子序列,分别对各子表进行直接插入排序。仅增量因子为 1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。
2. Python 代码实现
def shellSort(arr):
import math
gap=1
while(gap < len(arr)/3):
gap = gap*3+1
while gap > 0:
for i in range(gap,len(arr)):
temp = arr[i]
j = i-gap
while j >=0 and arr[j] > temp:
arr[j+gap]=arr[j]
j-=gap
arr[j+gap] = temp
gap = math.floor(gap/3)
return arr
演示:
动画如果没有看懂,我这里再贴几张静态图:
代码实现:
@Test
public void ShellSort() {
int[] arr = { 3, 44, 38, 5, 47, 15, 36, 26, 27, 2, 46, 4, 19, 50, 48 };
for (int gap = arr.length / 2; gap > 0; gap /= 2) {
// 对数组元素进行分组
for (int i = gap; i < arr.length; i++) {
// 遍历各组中的元素
for (int j = i - gap; j >= 0; j -= gap) {
// 交换元素
if (arr[j] > arr[j + gap]) {
int temp = arr[j];
arr[j] = arr[j + gap];
arr[j + gap] = temp;
}
}
}
}
System.out.println(Arrays.toString(arr));
}
运行结果:
[2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50]
1
那么在上面的程序段中,数组长度为15,所以在第一轮,数组被分为了15 / 2 = 7个小组,然后分别对每个小组的元素进行遍历。在第一轮中小组之间的元素间隔都为7,所以分成的小组数其实也就是元素之间的间隔。接着就可以对每个小组的元素进行比较,然后进行交换,接下来以此类推。