Farey Sequence
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 13435 | Accepted: 5272 |
Description
The Farey Sequence Fn for any integer n with n >= 2 is the set of irreducible rational numbers a/b with 0 < a < b <= n and gcd(a,b) = 1 arranged in increasing order. The first few are
F2 = {1/2}
F3 = {1/3, 1/2, 2/3}
F4 = {1/4, 1/3, 1/2, 2/3, 3/4}
F5 = {1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5}
You task is to calculate the number of terms in the Farey sequence Fn.
F2 = {1/2}
F3 = {1/3, 1/2, 2/3}
F4 = {1/4, 1/3, 1/2, 2/3, 3/4}
F5 = {1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5}
You task is to calculate the number of terms in the Farey sequence Fn.
Input
There are several test cases. Each test case has only one line, which contains a positive integer n (2 <= n <= 106). There are no blank lines between cases. A line with a single 0 terminates the input.
Output
For each test case, you should output one line, which contains N(n) ---- the number of terms in the Farey sequence Fn.
Sample Input
2 3 4 5 0
Sample Output
1 3 5 9
题目大意:
法雷级数Fn(n >= 2)由一系列不能约分的分数a/b(0 < a < b <= n 且gcd(a,b) =1)按递增的顺序排列组成,下面是法雷级数的前几项:
F2 = {1/2}
F3 = {1/3,1/2,2/3}
F4 = {1/4,1/3,1/2,2/3,3/4}
F5 = {1/5,1/4,1/3,2/5,1/2,3/5,2/3,3/4,4/5}
解题思路:
一个法雷序列Fn中数的个数就是分别与2,3,4,5,....,n-1,n互素的数的个数和,继而就是求从2到n连续的欧拉函数值的和,因为N的范围是[2,1000000],可以直接用欧拉函数的递推方法来求解,再打表预处理前n项和即可。
AC代码:
#include<iostream>
#include<cstdio>
using namespace std;
const int maxn = 1000001;
long long phi[maxn];
void dabiao()
{
int i,j;
for(i=1;i<=maxn;i++)
phi[i] = i;
for(i=2;i<=maxn;i+=2)
phi[i] /= 2;
for(i=3;i<=maxn;i+=2)
if(phi[i] == i)
{
for(j=i;j<=maxn;j+=i)
{
phi[j] = phi[j] / i * (i-1);
}
}
for(i=3;i<=1000001;i++)
{
phi[i] += phi[i-1];
}
}
int main()
{
int m;
dabiao();
while(scanf("%d",&m) != EOF && m)
{
printf("%lld\n",phi[m]);
}
return 0;
}

本文介绍了法雷级数序列的定义、计算方法及其在计算机科学领域的应用,通过实例演示了如何利用欧拉函数和递推方法求解序列中项的数量。
10万+

被折叠的 条评论
为什么被折叠?



