HDU 5159 Card (组合数学)

本文介绍了一种通过预处理计算特定组合中所有数出现次数的方法,并给出完整的C++实现代码。该算法通过动态规划思想计算出给定范围内所有可能组合中各数的总和。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

所有的组合中包含某个数的次数对于所有的数来说是相同的,那么就求出这个次数乘以所有数的和然后除以总的组合次数就可以了。开始想复杂了。。。

可以先预处理下,然后直接输出。

代码如下:

#include <iostream>
#include <string.h>
#include <math.h>
#include <queue>
#include <algorithm>
#include <stdlib.h>
#include <map>
#include <set>
#include <stdio.h>
using namespace std;
#define LL __int64
#define pi acos(-1.0)
const int mod=100000000;
const int INF=0x3f3f3f3f;
const double eqs=1e-8;
double dp[100001][6];
int main()
{
        int x, b, t, i, num=0, j, k;
        double ans1, ans2;
        for(i=1; i<=5; i++) {
                dp[1][i]=1;
        }
        for(i=2; i<=100000; i++) {
                dp[i][1]=dp[i-1][1]+i;
                for(j=2; j<=5; j++) {
                        ans1=ans2=1;
                        for(k=1; k<j; k++) {
                                ans1*=i;
                        }
                        for(k=1;k<j;k++){
                            ans2*=(i-1);
                        }
                       dp[i][j]=(i*ans1-(i-1)*ans2)*(i*1.0*(i+1)/2.0);
                }
        }
        scanf("%d",&t);
        while(t--) {
                scanf("%d%d",&x,&b);
                num++;
                printf("Case #%d: ",num);
                double ans=1;
                for(i=0; i<b; i++) {
                        ans*=x;
                }
                printf("%.3f\n",dp[x][b]/ans);
        }
        return 0;
}


### HDU OJ 排列组合问题解法 排列组合问题是算法竞赛中的常见题型之一,涉及数学基础以及高效的实现技巧。以下是关于如何解决此类问题的一些通用方法和具体实例。 #### 数学基础知识 在处理排列组合问题时,需要熟悉以下几个基本概念: - **阶乘计算**:用于求解全排列的数量 $ n! = n \times (n-1) \times ... \times 1 $[^4]。 - **组合数公式**:$ C(n, k) = \frac{n!}{k!(n-k)!} $ 表示从 $ n $ 中选取 $ k $ 的方案数[^5]。 - **快速幂运算**:当涉及到模运算时,可以利用费马小定理优化逆元的计算[^6]。 #### 题目推荐与分析 以下是一些典型的 HDU OJ 上的排列组合题目及其可能的解法: ##### 1. 基础排列组合计数 - **HDU 2039 近似数** - 描述:给定两个整数 $ a $ 和 $ b $,统计区间内的近似数数量。 - 方法:通过枚举每一位上的可能性来构建合法数字并计数[^7]。 ```cpp #include <iostream> using namespace std; long long comb(int n, int r){ if(r > n || r < 0)return 0; long long res=1; for(int i=1;i<=r;i++)res=res*(n-i+1)/i; return res; } int main(){ int t,n,k; cin>>t; while(t--){ cin>>n>>k; cout<<comb(n+k-1,k)<<endl; // 组合数应用 } } ``` ##### 2. 动态规划的应用 - **HDU 1028 Ignatius and the Princess III** - 描述:给出正整数 $ m $ 和 $ n $,问有多少种方式把 $ m $ 分成最多 $ n $ 份。 - 方法:定义状态转移方程 $ dp[i][j]=dp[i-1][j]+dp[i][j-i] $ 来表示当前总和为 $ j $ 并分成至多 $ i $ 份的情况数目[^8]。 ```cpp #include<bits/stdc++.h> using namespace std; const int MAXN=1e3+5; long long c[MAXN][MAXN]; void init(){ memset(c,0,sizeof(c)); c[0][0]=1; for(int i=1;i<MAXN;i++){ c[i][0]=c[i][i]=1; for(int j=1;j<i;j++) c[i][j]=(c[i-1][j-1]+c[i-1][j])%(1e9+7); } } int main(){ init(); int T,m,n; scanf("%d",&T); while(T--){ scanf("%d%d",&m,&n); printf("%lld\n",c[m+n-1][min(m,n)]); } } ``` #### 总结 针对不同类型的排列组合问题,可以选择合适的工具和技术加以应对。无论是简单的直接计算还是复杂的动态规划模型,都需要扎实的基础知识作为支撑。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值