算法原理:
- 在kruskal算法正确性的基础上,考虑进行优化.
- 由于kruskal的复杂度为O(mlogm),在稠密图中表现可能不太好,思考能否利用最短这一性质对复杂度上界进行优化.
- 联想到dijkstra的性质,可以发现最小生成树在局部也满足这一性质(最小生成树的每一个子树都是一个最小生成树).
- 由于任意一点都必然会在最小生成树中,可以从任意一点开始"探索"(类似文明VI中探索地图).
- 假设首先选择了1号点,那么对于1号点来说,如果想要拓展自己的大小且花费尽量小,应该选择权值最小的边.
- 递归进行以上操作,就可以求出整个图的最小生成树.
堆优化:
- 考虑到在最小生成树的拓展过程中,每个点在被选择时,它所在的"入边"一定是最优选择,而已有的最小生成树可以证明是完美的,而且每个点实际上仅仅是对于其他点的一个"中转站",所以它的"入边"就不需要再被更新。可以利用这一个性质,结合Dijkstra的堆优化,将"入边"长度作为小根堆的特征值,即可将算法复杂度从
优化到