把vgg16用在单通道灰度图上

1.把vgg16用在单通道灰度图上,具体做法就是直接将第一个卷积层的输入通道改为1

附完整代码:

import torch
from torch import nn
from torchvision.models.vgg import vgg16
from PIL import Image
import torchvision.transforms as transforms
img_to_tensor = transforms.ToTensor()
from torch.autograd import Variable
import numpy as np

vgg = vgg16(pretrained=True)
#更改vgg网络的input为单通道
vgg.features[0]=nn.Conv2d(1, 64, kernel_size=3, padding=1)

def inference(model, imgpath):
    model.eval()  # 必需,否则预测结果是错误的

    img = Image.open(imgpath)
    img = img.resize((224, 224))
    tensor = img_to_tensor(img)
    tensor = tensor.resize_(1, 1, 224, 224)

    result = model(Variable(tensor))
    result_npy = result.data.cpu().numpy()  # 将结果传到CPU,并转换为numpy格式
    max_index = np.argmax(result_npy[0])

    return max_index

imgpath = 'F:\pycharmProject\SRGAN-master\grey.png'
print(inference(vgg, imgpath))

2.vgg16模型减半,以pre_trained vgg16权重作为初始权重,重新训练vgg16(思路是这样,我还没运行过,因为还没下载ImageNet数据集,大家借鉴思路就行了)

附完整代码:

import torch
from torch import nn
from torchvision.models.vgg import vgg16
from PIL import Image
import torchvision.transforms as transforms
import torchvision.datasets as dsets
img_to_tensor = transforms.ToTensor()
from torch.autograd import Variable
import numpy as np
import torch.optim as optim

EPOCH=50
BATCH=4
LEARNING_RATE = 0.01

#process data
transform = transforms.Compose([
    transforms.RandomSizedCrop(224),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize(mean = [ 0.485, 0.456, 0.406 ],
                         std  = [ 0.229, 0.224, 0.225 ]),
   
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值