树上倍增:
fa[i][j]:=结点i的第2^j父亲结点 更新方式为f[i][j]=fa[fa[i][j-1]][j-1]d[i][j]:=从结点i(包含)到第2^j父亲结点(不包含)路径上面的信息,更新方式为d[i][j]=d[i][j-1]+d[fa[i][j-1]][j-1]
根据实际情况重新定义operator + 运算 一般储存的都是最值信息
重新定义operator + 运算 更加容易理清思路~~~~
cf588E: 点上的树上倍增
题意:给一棵树(n个点),树上结点住着一些人(下标从1--m),输出(u,v)路径上面的所有人根据下标排序后的前a个人的下标(a<=10)
解法:
d[i][j]:=是一个拥有一个大小为10的数组的struct 类型,
d[i][j]=d[i][j-1]+d[fa[i][j-1]][j-1],直接记录这个路径上下标最小的前10个即可~~重新定义+运算
#include <algorithm>
#include <iostream>
#include<string.h>
#include <fstream>
#include <math.h>
#include <vector>
#include <cstdio>
#include <string>
#include <queue>
#include <stack>
#include <map>
#include <set>
#define exp 1e-8
#define fi first
#define se second
#define ll long long
#define INF 0x3f3f3f3f
#define pb(a) push_back(a)
#define mp(a,b) make_pair(a,b)
#define all(a) a.begin(),a.end()
#define mm(a,b) memset(a,b,sizeof(a));
#define for0(a,b) for(int a=0;a<=b;a++)//0---(b-1)
#define for1(a,b) for(int a=1;a<=b;a++)//1---(b)
#define rep(a,b,c) for(int a=b;a<=c;a++)//b---c
#define repp(a,b,c)for(int a=b;a>=c;a--)///
#define cnt_one(i) __builtin_popcount(i)
#define stl(c,itr) for(__typeof((c).begin()) itr=(c).begin();itr!=(c).end();itr++)
using namespace std;
void bug(string m="here"){cout<<m<<endl;}
template<typename __ll> inline void READ(__ll &m){__ll x=0,f=1;char ch=getchar();while(!(ch>='0'&&ch<='9')){if(ch=='-')f=-1;ch=getchar();}while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}m=x*f;}
template<typename __ll>inline void read(__ll &m){READ(m);}
template<typename __ll>inline void read(__ll &m,__ll &a){READ(m);READ(a);}
template<typename __ll>inline void read(__ll &m,__ll &a,__ll &b){READ(m);READ(a);READ(b);}
template<typename __ll>inline void read(__ll &m,__ll &a,__ll &b,__ll &c){READ(m);READ(a);READ(b);READ(c);}
template<typename __ll>inline void read(__ll &m,__ll &a,__ll &b,__ll &c,__ll &d){READ(m);READ(a);READ(b);READ(c);read(d);}
template < class T > inline void out(T a){if(a<0){putchar('-');a=-a;}if(a>9)out(a/10);putchar(a%10+'0');}
template < class T > inline void outln(T a){out(a);puts("");}
template < class T > inline void out(T a,T b){out(a);putchar(' ');out(b);}
template < class T > inline void outln(T a,T b){out(a);putchar(' ');outln(b);}
template < class T > inline void out(T a,T b,T c){out(a);putchar(' ');out(b);putchar(' ');out(c);}
template < class T > inline void outln(T a,T b,T c){out(a);putchar(' ');outln(b);putchar(' ');outln(b);}
template < class T > T gcd(T a, T b) { return b ? gcd(b, a % b) : a; }
template < class T > T lcm(T a, T b) { return a / gcd(a, b) * b; }
template < class T > inline void rmin(T &a, const T &b) { if(a > b) a = b; }
template < class T > inline void rmax(T &a, const T &b) { if(a < b) a = b; }
template < class T > T pow(T a, T b) { T r = 1; while(b > 0) { if(b & 1) r = r * a; a = a * a; b /= 2; } return r; }
template < class T > T pow(T a, T b, T mod) { T r = 1; while(b > 0) { if(b & 1) r = r * a % mod; a = a * a % mod; b /= 2; } return r; }
const int cnt_edge=200010; //Ð޸İ¡
const int cnt_v=100010;
int head[cnt_v],cnt_e;
struct EDGE{int v,next,cost;}edge[cnt_edge];
void addedge(int u,int v,int cost=0)
{edge[cnt_e].v=v;edge[cnt_e].cost=cost;edge[cnt_e].next=head[u];head[u]=cnt_e++;}
void init(){cnt_e=0;memset(head,-1,sizeof(head));}
struct data
{
int n;
int p[15];
data(){n=0;}
void add(int num)
{
int pos=lower_bound(p,p+n,num)-p;
for(int i=n;i>pos;i--)p[i]=p[i-1];
p[pos]=num;
n=min(n+1,10);
}
void print()
{
if(n!=0)
out(n),putchar(' ');
else outln(n);
for(int i=0;i<n;i++)
{
if(i==n-1)outln(p[i]);
else out(p[i]),putchar(' ');
}
}
}d[100010][25];
data operator +(const data &a,const data &b){///重新定义
data c;
int i=0,j=0;
while(i<a.n&&j<b.n&&c.n<10)
{
if(a.p[i]<b.p[j])c.p[c.n++]=a.p[i++];
else c.p[c.n++]=b.p[j++];
}
while(i<a.n&&c.n<10)
c.p[c.n++]=a.p[i++];
while(j<b.n&&c.n<10)
c.p[c.n++]=b.p[j++];
return c;
}
int deep[100010];
int fa[100010][25];
int n,m,q;
void dfs(int u,int f,int dee)
{
fa[u][0]=f;
deep[u]=dee;
for(int i=1;i<=20;i++)
{
if(deep[u]<(1<<i))break;
fa[u][i]=fa[fa[u][i-1]][i-1];
d[u][i]=d[u][i-1]+d[fa[u][i-1]][i-1];
}
for(int i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].v;
if(v==f)continue;
dfs(v,u,dee+1);
}
}
void lca(int x,int y,int k)
{
data ans;
if(deep[x]<deep[y])swap(x,y);
int t=deep[x]-deep[y];
for(int i=0;i<=20;i++)
if(t&(1<<i))
{
ans=ans+d[x][i];
x=fa[x][i];
}
if(x==y)
{
ans=ans+d[x][0];
ans.n=min(ans.n,k);
ans.print();
return;
}
for(int i=20;i>=0;i--)
if(fa[x][i]!=fa[y][i])
{
ans=ans+d[x][i]+d[y][i];
x=fa[x][i];
y=fa[y][i];
}
ans=ans+d[x][0]+d[y][0];
x=fa[x][0];
ans=ans+d[x][0];
ans.n=min(ans.n,k);
ans.print();
}
int main()
{
init();
read(n,m,q);
for1(i,n-1)
{
int a,b;read(a,b);
addedge(a,b);
addedge(b,a);
}
for1(i,m)
{
int idx;read(idx);
d[idx][0].add(i);
}
dfs(1,0,0);
while(q--)
{
int a,b,c;
read(a,b,c);
lca(a,b,c);
}
}
BZOJ1977:边上的树上倍增
题意:求次小生成树,要求严格最小,即最小生成树权值为EM,要求生成的次小生成树ES>EM
解法:先求出最小生成树。然后每次加一条未用过的边<u,n>,求出树<u,v>路径上最大的边和第二大的边,要么删除最大的边或者删除第二大的边然后加入当前未用过的边生成次小生成树
d[i][j]:=是一个拥有first、second的struct类型
d[i][j]=d[i][j-1]+d[fa[i][j-1]][j-1],直接记录这个路径上最大和次大~~重新定义+运算
边上的树上倍增把边的信息放到深度比较大的点进行保存,然后转成点上的树上倍增。
只是最后不能加上LCA这个点的信息~~
#include <algorithm>
#include <iostream>
#include<string.h>
#include <fstream>
#include <math.h>
#include <vector>
#include <cstdio>
#include <string>
#include <queue>
#include <stack>
#include <map>
#include <set>
#define exp 1e-8
#define fi first
#define se second
#define ll long long
#define INF 0x3f3f3f3f
#define pb(a) push_back(a)
#define mp(a,b) make_pair(a,b)
#define all(a) a.begin(),a.end()
#define mm(a,b) memset(a,b,sizeof(a));
#define for0(a,b) for(int a=0;a<=b;a++)//0---(b-1)
#define for1(a,b) for(int a=1;a<=b;a++)//1---(b)
#define rep(a,b,c) for(int a=b;a<=c;a++)//b---c
#define repp(a,b,c)for(int a=b;a>=c;a--)///
#define cnt_one(i) __builtin_popcount(i)
#define stl(c,itr) for(__typeof((c).begin()) itr=(c).begin();itr!=(c).end();itr++)
using namespace std;
void bug(string m="here"){cout<<m<<endl;}
template<typename __ll> inline void READ(__ll &m){__ll x=0,f=1;char ch=getchar();while(!(ch>='0'&&ch<='9')){if(ch=='-')f=-1;ch=getchar();}while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}m=x*f;}
template<typename __ll>inline void read(__ll &m){READ(m);}
template<typename __ll>inline void read(__ll &m,__ll &a){READ(m);READ(a);}
template<typename __ll>inline void read(__ll &m,__ll &a,__ll &b){READ(m);READ(a);READ(b);}
template<typename __ll>inline void read(__ll &m,__ll &a,__ll &b,__ll &c){READ(m);READ(a);READ(b);READ(c);}
template<typename __ll>inline void read(__ll &m,__ll &a,__ll &b,__ll &c,__ll &d){READ(m);READ(a);READ(b);READ(c);read(d);}
template < class T > inline void out(T a){if(a<0){putchar('-');a=-a;}if(a>9)out(a/10);putchar(a%10+'0');}
template < class T > inline void outln(T a){out(a);puts("");}
template < class T > inline void out(T a,T b){out(a);putchar(' ');out(b);}
template < class T > inline void outln(T a,T b){out(a);putchar(' ');outln(b);}
template < class T > inline void out(T a,T b,T c){out(a);putchar(' ');out(b);putchar(' ');out(c);}
template < class T > inline void outln(T a,T b,T c){out(a);putchar(' ');outln(b);putchar(' ');outln(b);}
template < class T > T gcd(T a, T b) { return b ? gcd(b, a % b) : a; }
template < class T > T lcm(T a, T b) { return a / gcd(a, b) * b; }
template < class T > inline void rmin(T &a, const T &b) { if(a > b) a = b; }
template < class T > inline void rmax(T &a, const T &b) { if(a < b) a = b; }
template < class T > T pow(T a, T b) { T r = 1; while(b > 0) { if(b & 1) r = r * a; a = a * a; b /= 2; } return r; }
template < class T > T pow(T a, T b, T mod) { T r = 1; while(b > 0) { if(b & 1) r = r * a % mod; a = a * a % mod; b /= 2; } return r; }
const int cnt_edge=200010; //Ð޸İ¡
const int cnt_v=100010;
int head[cnt_v],cnt_e;
struct EDGE{int v,next,cost;}edge[cnt_edge];
void addedge(int u,int v,int cost=0)
{edge[cnt_e].v=v;edge[cnt_e].cost=cost;edge[cnt_e].next=head[u];head[u]=cnt_e++;}
void init(){cnt_e=0;memset(head,-1,sizeof(head));}
struct data
{
int n;
int p[15];
data(){n=0;}
void add(int num)
{
int pos=lower_bound(p,p+n,num)-p;
for(int i=n;i>pos;i--)p[i]=p[i-1];
p[pos]=num;
n=min(n+1,10);
}
void print()
{
if(n!=0)
out(n),putchar(' ');
else outln(n);
for(int i=0;i<n;i++)
{
if(i==n-1)outln(p[i]);
else out(p[i]),putchar(' ');
}
}
}d[100010][25];
data operator +(const data &a,const data &b){///重新定义
data c;
int i=0,j=0;
while(i<a.n&&j<b.n&&c.n<10)
{
if(a.p[i]<b.p[j])c.p[c.n++]=a.p[i++];
else c.p[c.n++]=b.p[j++];
}
while(i<a.n&&c.n<10)
c.p[c.n++]=a.p[i++];
while(j<b.n&&c.n<10)
c.p[c.n++]=b.p[j++];
return c;
}
int deep[100010];
int fa[100010][25];
int n,m,q;
void dfs(int u,int f,int dee)
{
fa[u][0]=f;
deep[u]=dee;
for(int i=1;i<=20;i++)
{
if(deep[u]<(1<<i))break;
fa[u][i]=fa[fa[u][i-1]][i-1];
d[u][i]=d[u][i-1]+d[fa[u][i-1]][i-1];
}
for(int i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].v;
if(v==f)continue;
dfs(v,u,dee+1);
}
}
void lca(int x,int y,int k)
{
data ans;
if(deep[x]<deep[y])swap(x,y);
int t=deep[x]-deep[y];
for(int i=0;i<=20;i++)
if(t&(1<<i))
{
ans=ans+d[x][i];
x=fa[x][i];
}
if(x==y)
{
ans=ans+d[x][0];
ans.n=min(ans.n,k);
ans.print();
return;
}
for(int i=20;i>=0;i--)
if(fa[x][i]!=fa[y][i])
{
ans=ans+d[x][i]+d[y][i];
x=fa[x][i];
y=fa[y][i];
}
ans=ans+d[x][0]+d[y][0];
x=fa[x][0];
ans=ans+d[x][0];
ans.n=min(ans.n,k);
ans.print();
}
int main()
{
init();
read(n,m,q);
for1(i,n-1)
{
int a,b;read(a,b);
addedge(a,b);
addedge(b,a);
}
for1(i,m)
{
int idx;read(idx);
d[idx][0].add(i);
}
dfs(1,0,0);
while(q--)
{
int a,b,c;
read(a,b,c);
lca(a,b,c);
}
}