在深度学习领域,构建神经网络来解决各种任务是一项令人兴奋的工作。在本文中,我们将深入探讨使用PyTorch构建卷积神经网络(CNN)对来自流行的MNIST数据集的手写数字进行分类。
1、导入库和加载数据
首先,让我们通过导入必要的库和加载MNIST数据集来设置我们的环境。PyTorch和torchvision对于处理数据和创建神经网络至关重要,而matplotlib则有助于可视化图像。
import numpy as np
import torch
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
import torchvision
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
现在,让我们加载数据集。我们将对数据进行归一化处理,以使其均值为零,方差为1,以确保训练稳定性。
train_loader = torch.utils.data.DataLoader(
datasets.MNIST(root='./data',
train=True,
download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=64, shuffle=True)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('./data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=64, shuffle=True)
2、数据可视化
在深入网络架构之前,让我们先偷偷看一下我们的数据。可视化一些样本图像可以帮助我们了解数据集的特征。
def imshow(img):
img = img / 2 + 0.5 # 反归一化
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
plt.show()
dataiter = iter(train_loader)
images, labels = dataiter.next()
imshow(torchvision.utils.make_grid(images))
3、定义神经网络架构
现在是核心部分 - 定义我们的CNN架构。我们将为数字分类创建一个简单而有效的网络。
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 6, 5