POJ 2452 Sticks Problem

本文介绍了一种使用RMQ(Range Minimum Query)和二分查找的算法来解决棍子问题,该问题涉及到找出两根棍子之间长度最大的棍子。通过输入棍子的数量和每根棍子的长度,输出满足条件的最大距离。该方法利用了RMQ的数据结构和二分搜索的高效性,解决了问题并给出了详细的实现步骤。

RMQ+二分。。。。
枚举 i  ,找比 i 小的第一个元素,再找之间的第一个最大元素。。。。。

 

                  Sticks Problem
Time Limit: 6000MS Memory Limit: 65536K
Total Submissions: 9338 Accepted: 2443

Description

Xuanxuan has n sticks of different length. One day, she puts all her sticks in a line, represented by S1, S2, S3, ...Sn. After measuring the length of each stick Sk (1 <= k <= n), she finds that for some sticks Si and Sj (1<= i < j <= n), each stick placed between Si and Sj is longer than Si but shorter than Sj. 

Now given the length of S1, S2, S3, …Sn, you are required to find the maximum value j - i.

Input

The input contains multiple test cases. Each case contains two lines. 
Line 1: a single integer n (n <= 50000), indicating the number of sticks. 
Line 2: n different positive integers (not larger than 100000), indicating the length of each stick in order.

Output

Output the maximum value j - i in a single line. If there is no such i and j, just output -1.

Sample Input

4
5 4 3 6
4
6 5 4 3

Sample Output

1
-1

Source

POJ Monthly,static
 
 
 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstring>
 4 
 5 using namespace std;
 6 
 7 int dp_max[60000][16],dp_min[60000][16],a[60000],n;
 8 
 9 int _max(int l,int r)
10 {
11     if(a[l]>=a[r]) return l;
12     else return r;
13 }
14 
15 int _min(int l,int r)
16 {
17     if(a[l]<=a[r]) return l;
18     else return r;
19 }
20 
21 void Init()
22 {
23     for(int i=1;i<=n;i++)
24         dp_max[i][0]=dp_min[i][0]=i;
25     for(int j=1;(1<<j)<=n;j++)
26     {
27         for(int i=1;i+(1<<j)-1<=n;i++)
28         {
29             int m=i+(1<<(j-1));
30             dp_max[i][j]=_max(dp_max[i][j-1],dp_max[m][j-1]);
31             dp_min[i][j]=_min(dp_min[i][j-1],dp_min[m][j-1]);
32         }
33     }
34 }
35 
36 int rmq_min(int L,int R)
37 {
38     int k=0;
39     while(L+(1<<k)-1<=R) k++; k--;
40     return _min(dp_min[L][k],dp_min[R-(1<<k)+1][k]);
41 }
42 
43 int rmq_max(int L,int R)
44 {
45     int k=0;
46     while(L+(1<<k)-1<=R) k++; k--;
47     return _max(dp_max[L][k],dp_max[R-(1<<k)+1][k]);
48 }
49 
50 int main()
51 {
52     while(scanf("%d",&n)!=EOF)
53     {
54         for(int i=1;i<=n;i++)
55             scanf("%d",a+i);
56         Init();
57         int ans=0,r,k;
58         for(int i=1;i+ans<n;i++)
59         {
60             int low=i+1,high=n,mid;
61             while(low<=high)
62             {
63                 if(low==high) break;
64                 mid=(low+high)>>1;
65                 if(a[i]<a[rmq_min(low,mid)])
66                     low=mid+1;
67                 else
68                     high=mid;
69             }
70             r=low;
71             k=rmq_max(i,r);
72             if(a[i]<a[k])
73                 ans=max(ans,k-i);
74         }
75         if(ans==0) printf("-1\n");
76         else printf("%d\n",ans);
77     }
78     return 0;
79 }

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值