判别式模型与生成式模型的区别
产生式模型(Generative Model)与判别式模型(Discrimitive Model)是分类器常遇到的概念,它们的区别在于:
对于输入x,类别标签c:
产生式模型估计它们的联合概率分布P(x,c)=P(x|c)×P(c),实际估计P(x|c),求得P(x,c)=P(x|c)×P(c)
判别式模型估计条件概率分布P(c|x)
产生式模型可以根据贝叶斯公式得到判别式模型,但反过来不行。
Andrew Ng在NIPS2001年有一篇专门比较判别模型和产生式模型的文章:
On Discrimitive vs. Generative classifiers: A comparision of logistic regression and naive Bayes
(http://robotics.stanford.edu/~ang/papers/nips01-discriminativegenerative.pdf)
判别式模型常见的主要有:
Logistic Regression
SVM
Traditional Neural Networks
Nearest Neighbor
CRF
Linear Discriminant Analysis
Boosting
Linear Regression
产生式模型常见的主要有:
Gaussians, Naive Bayes, HMMs
Sigmoidal Belief Networks, Bayesian Networks
Markov Random Fields
Latent Dirichlet Allocation
参考资料:
http://bbs.sciencenet.cn/blog-484653-442300.html
http://www.leexiang.com/discriminative-model-and-generative-model
http://blog.163.com/huai_jing@126/blog/static/1718619832011227757554/