Inference with Gemma using JAX and Flax之实践项目

本文介绍如何使用GoogleDeepMind的Gemma库,基于JAX、Flax、Orbax和SentencePiece进行Gemma2BInstruct模型的样本生成和推断。教程包括设置Kaggle访问权限,获取GPU资源,以及在GoogleColab中实际操作的步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Link Address: Inference with Gemma using JAX and Flax

Overview

Gemma is a family of lightweight, state-of-the-art open large language models, based on the Google DeepMind Gemini research and technology. This tutorial demonstrates how to perform basic sampling/inference with the Gemma 2B Instruct model using Google DeepMind's gemma library that was written with JAX (a high-performance numerical computing library), Flax (the JAX-based neural network library), Orbax (a JAX-based library for training utilities like checkpointing), and SentencePiece (a tokenizer/detokenizer library). Although Flax is not used directly in this notebook, Flax was used to create Gemma.

This notebook can run on Google Colab with free T4 GPU (go to Edit > Notebook settings > Under Hardware accelerator select T4 GPU).

Run in Google Colab

Setup

1. Set up Kaggle access for Gemma

To complete this tutorial, you first need to follow the setup instructions at Gemma setup, which show you how to do the following:

  • Get access to Gemma on kaggle.com.
  • Select a Colab runtime with sufficient resources to run the Gemma model.
  • Generate and configure a Kaggle username and API key.

After you've completed the Gemma setup, move on to the next section, where you'll set environment variables for your Colab environment.

 

1. Get access to Gemma on kaggle.com.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值