SVM

本文详细介绍了SVM支持向量机的基本概念及其在sklearn中的应用,包括SVC支持向量分类与SVR支持向量回归的区别,核方法如线性核、多项式核及高斯核的应用场景与优缺点,以及支持向量的选择与正则化参数C的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

    SVM 支持向量机,在sklearn里面,有两种,SVC支持向量分类,用于分类问题,SVR,支持向量回归,用于回归问题。

核方法

用于产生非线性分类边界。
linear,线性核,会产生线性分类边界,一般来说它的计算效率最高,而且需要数据最少。线性函数。

from sklearn import svm
svc = svm.SVC(kernel='linear')
svc.fit(X, y)

poly,多项式核,会产生多项式分类边界。多项式函数。

svc = svm.SVC(kernel='poly',degree=4)
svc.fit(X, y)

rbf,径向基函数,也就是高斯核,是根据与每一个支持向量的距离来决定分类边界的,它能映射到无限维,是最灵活的方法,但是也需要最多的数据。容易产生过拟合问题。指数函数。

svc = svm.SVC(kernel='rbf', gamma=1e2)

多分类器
采用”one vs one”,在任意两个样本之间设计一个SVM,k个类别的样本设计k(k-1)/2个svm,当对一个未知样本进行分类时,最后得票最多的类别即为该未知样本的类别。
线性支持向量分类器(LinearSVC):相比于svm.SVC,使用了不同的算法,在某些数据集(比如稀疏数据集,文本挖掘)上运行得更快,对于多分类采用的就是”one vs all”的策略

svc=svm.LinearSVC(X,Y)

支持向量

就是最靠近分离边界的样本点,它们是二分类问题中最具有代表性的点。支持向量的坐标可以通过方法support_vectors_来找到。

svc.support_vectors_[:, 0], svc.support_vectors_[:, 1]

正则化

只考虑支持向量。使模型在处理样本特征的时候变得更加简单。
正则项可以通过调整系数C来决定

#大的C值:将会有较少的支持向量,决策边界是被大多数支持向量所决定。
svc = svm.SVC(kernel='linear', C=1e3)
#小的C值:将会有较多支持向量,决策边界=类别A的平均值-类别B的平均值
svc = svm.SVC(kernel='linear', C=1e-3)

默认参数C=1,对于很多数据集,默认值就能工作的很好。
实践经验:对许多分类器来说,对样本正则化,采用标准差正则方法是非常重要的提升预测效果的手段。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值