Remap of Holistic learning

本文介绍了一种基于整体思维的学习策略——整体学习法。通过构建知识体系、模型和连接不同概念来加深理解并促进创造性思考。文章详细阐述了获取、理解、探索、调试和应用五个步骤,并提供了速读、基于流程的笔记记录、隐喻等实用技巧。

Holistic learning

Holistic learning is a strategy based on weaving information into webs, instead of bludgeoning yourself with rote-memorization. The foundation of this strategy is:

1) Constructs - The sum total of all connections that represent your knowledge about a subject. These are the cities of your mind.
2) Models - Compact units of information that form the seeds of constructs. These are
metaphors, visceralizations and diagrams. Models are the major intersections in the roadmap of your constructs.
3) Highways - Connections between different constructs. These aid in creative thinking. “Thinking outside the box” perfectly describes the act of thinking beyond the current constructs you have.


Holistic learning works in a sequence of five steps. These steps aren’t always followed one-byone, but this is the path they usually take:
1) Acquire - Receiving information through your senses.
2) Understand - Get the surface of information.
3) Explore - Connect that basic idea to others. Exploration works in three main ways:
a) Depth Exploration - Exploring the background of an idea.
b) Lateral Exploration - Exploring associated ideas.
c) Vertical Exploration - Exploring the idea as it relates to different constructs.
4) Debug - Prune away false connections.
5) Apply - Take an idea and give it meaning beyond immediate uses.
Information is similar to digestion. The process is the same regardless of what you ingest. But
the inputs can be very different. Taking into account different information types can help you plan
your learning efforts. There are five major types of information:
1) Arbitrary - Facts, dates, lists, rules and sequences. They have little logical grouping or depth.
2) Opinion - Information gathered for the sole purpose of supporting or defeating your
argument. Volume is important here, rather than being able to memorize.
3) Process - Information in the form of skills. Requires practice, but is easier to remember.

4) Concrete - Ideas that are easy to visualize. These are often practical ideas that are easy to experience.
5) Abstract - Ideas that are difficult to experience. Math, philosophy and physics are some of 
the most abstract fields.


Summary of Techniques
Speed Reading
1) Use a pointer.
2) Practice read.

3) Use active reading to improve learning while reading.


Flow-Based Note Taking
1) Don’t write notes in a rigid hierarchy.
2) Create associations between briefly written ideas.
Metaphor
Look for a story, image or process that mirrors what you are studying.


Visceralization
1) Create a mental image of what you are studying.
2) Add other sensations and emotions to this image.

3) Look for ways the image does not apply or does not fully cover the subject to prevent errors later.


Diagramming
Create flow, concept or picture diagrams to link together several ideas onto the same source.
Link Method
1) Create a sequence of symbols that are easy to visualize.
2) Create “links” between each item by visualizing a bizarre scene that combines the two.

3) Create a link between the first sequence item and a trigger.


Peg Method
Same as link method except you link each idea to a list of 0-12 rhyming symbols you can recall easily.


Information Compression
Three main forms:
1) Mnemonics - Using words to compress several ideas into a single idea.
2) Picture Compression - Create a picture that links several ideas under a single theme.

3) Notes Compression - Rewrite a vast quantity of notes onto just a few pages.


Practical Usage

Look for ways to apply the idea in your daily life.


Model Debugging

Practice questions in your subject regularly and look for potential errors in your holistic web.


Project-Based Learning
Set up projects of 1-3 months that will force you to learn new concepts. This is a useful
exercise for self-education, where there is less structure to guide you.


The Productive Student
1) Manage Your Energy
- Stay in shape, eat healthy and don't work without sleep.
- Schedule a day off each week.
2) Don't “Study”
3) Nuke Procrastination
-Set up a Weekly and Daily Goals list to keep focused.
4) Batch smaller tasks into groups.
5) Be organized.

-Keep a calendar, to-do list and carry a notepad with you at all times.


Self-Education
Self-education can be cheap, fast and rewarding but it also has challenges. Namely, it has less structure and is more difficult than formal education. The main ways you can improve your ability
to teach yourself are:
1) Improve your habits
2) Overcome the frustration barrier
3) Set learning goals to track progress

标题SpringBoot智能在线预约挂号系统研究AI更换标题第1章引言介绍智能在线预约挂号系统的研究背景、意义、国内外研究现状及论文创新点。1.1研究背景与意义阐述智能在线预约挂号系统对提升医疗服务效率的重要性。1.2国内外研究现状分析国内外智能在线预约挂号系统的研究与应用情况。1.3研究方法及创新点概述本文采用的技术路线、研究方法及主要创新点。第2章相关理论总结智能在线预约挂号系统相关理论,包括系统架构、开发技术等。2.1系统架构设计理论介绍系统架构设计的基本原则和常用方法。2.2SpringBoot开发框架理论阐述SpringBoot框架的特点、优势及其在系统开发中的应用。2.3数据库设计与管理理论介绍数据库设计原则、数据模型及数据库管理系统。2.4网络安全与数据保护理论讨论网络安全威胁、数据保护技术及其在系统中的应用。第3章SpringBoot智能在线预约挂号系统设计详细介绍系统的设计方案,包括功能模块划分、数据库设计等。3.1系统功能模块设计划分系统功能模块,如用户管理、挂号管理、医生排班等。3.2数据库设计与实现设计数据库表结构,确定字段类型、主键及外键关系。3.3用户界面设计设计用户友好的界面,提升用户体验。3.4系统安全设计阐述系统安全策略,包括用户认证、数据加密等。第4章系统实现与测试介绍系统的实现过程,包括编码、测试及优化等。4.1系统编码实现采用SpringBoot框架进行系统编码实现。4.2系统测试方法介绍系统测试的方法、步骤及测试用例设计。4.3系统性能测试与分析对系统进行性能测试,分析测试结果并提出优化建议。4.4系统优化与改进根据测试结果对系统进行优化和改进,提升系统性能。第5章研究结果呈现系统实现后的效果,包括功能实现、性能提升等。5.1系统功能实现效果展示系统各功能模块的实现效果,如挂号成功界面等。5.2系统性能提升效果对比优化前后的系统性能
在金融行业中,对信用风险的判断是核心环节之一,其结果对机构的信贷政策和风险控制策略有直接影响。本文将围绕如何借助机器学习方法,尤其是Sklearn工具包,建立用于判断信用状况的预测系统。文中将涵盖逻辑回归、支持向量机等常见方法,并通过实际操作流程进行说明。 一、机器学习基本概念 机器学习属于人工智能的子领域,其基本理念是通过数据自动学习规律,而非依赖人工设定规则。在信贷分析中,该技术可用于挖掘历史数据中的潜在规律,进而对未来的信用表现进行预测。 二、Sklearn工具包概述 Sklearn(Scikit-learn)是Python语言中广泛使用的机器学习模块,提供多种数据处理和建模功能。它简化了数据清洗、特征提取、模型构建、验证与优化等流程,是数据科学项目中的常用工具。 三、逻辑回归模型 逻辑回归是一种常用于分类任务的线性模型,特别适用于二类问题。在信用评估中,该模型可用于判断借款人是否可能违约。其通过逻辑函数将输出映射为0到1之间的概率值,从而表示违约的可能性。 四、支持向量机模型 支持向量机是一种用于监督学习的算法,适用于数据维度高、样本量小的情况。在信用分析中,该方法能够通过寻找最佳分割面,区分违约与非违约客户。通过选用不同核函数,可应对复杂的非线性关系,提升预测精度。 五、数据预处理步骤 在建模前,需对原始数据进行清理与转换,包括处理缺失值、识别异常点、标准化数值、筛选有效特征等。对于信用评分,常见的输入变量包括收入水平、负债比例、信用历史记录、职业稳定性等。预处理有助于减少噪声干扰,增强模型的适应性。 六、模型构建与验证 借助Sklearn,可以将数据集划分为训练集和测试集,并通过交叉验证调整参数以提升模型性能。常用评估指标包括准确率、召回率、F1值以及AUC-ROC曲线。在处理不平衡数据时,更应关注模型的召回率与特异性。 七、集成学习方法 为提升模型预测能力,可采用集成策略,如结合多个模型的预测结果。这有助于降低单一模型的偏差与方差,增强整体预测的稳定性与准确性。 综上,基于机器学习的信用评估系统可通过Sklearn中的多种算法,结合合理的数据处理与模型优化,实现对借款人信用状况的精准判断。在实际应用中,需持续调整模型以适应市场变化,保障预测结果的长期有效性。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值