204. Count Primes_找n以内的质数_hash

本文介绍了一种高效的素数计数方法——埃拉托斯特尼筛法,并详细解释了其工作原理与实现步骤,展示了如何避免重复计算以提高效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目以及解法思路答案在原网页上都有。https://leetcode.com/problems/count-primes/

Description:

Count the number of prime numbers less than a non-negative number, n.

Hint:

Let's start with a isPrime function. To determine if a number is prime, we need to check if it is not divisible by any number less than n. The runtime complexity of isPrime function would be O(n) and hence counting the total prime numbers up to n would be O(n2). Could we do better?


As we know the number must not be divisible by any number > n / 2, we can immediately cut the total iterations half by dividing only up to n / 2. Could we still do better?


Let's write down all of 12's factors:


2 × 6 = 12
3 × 4 = 12
4 × 3 = 12
6 × 2 = 12
As you can see, calculations of 4 × 3 and 6 × 2 are not necessary. Therefore, we only need to consider factors up to √n because, if n is divisible by some number p, then n = p × q and since p ≤ q, we could derive that p ≤ √n.


Our total runtime has now improved to O(n1.5), which is slightly better. Is there a faster approach?


public int countPrimes(int n) {
   int count = 0;
   for (int i = 1; i < n; i++) {
      if (isPrime(i)) count++;
   }
   return count;
}


private boolean isPrime(int num) {
   if (num <= 1) return false;
   // Loop's ending condition is i * i <= num instead of i <= sqrt(num)
   // to avoid repeatedly calling an expensive function sqrt().
   for (int i = 2; i * i <= num; i++) {
      if (num % i == 0) return false;
   }
   return true;
}
The Sieve of Eratosthenes is one of the most efficient ways to find all prime numbers up to n. But don't let that name scare you, I promise that the concept is surprisingly simple.




Sieve of Eratosthenes: algorithm steps for primes below 121. "Sieve of Eratosthenes Animation" by SKopp is licensed under CC BY 2.0.


We start off with a table of n numbers. Let's look at the first number, 2. We know all multiples of 2 must not be primes, so we mark them off as non-primes. Then we look at the next number, 3. Similarly, all multiples of 3 such as 3 × 2 = 6, 3 × 3 = 9, ... must not be primes, so we mark them off as well. Now we look at the next number, 4, which was already marked off. What does this tell you? Should you mark off all multiples of 4 as well?


4 is not a prime because it is divisible by 2, which means all multiples of 4 must also be divisible by 2 and were already marked off. So we can skip 4 immediately and go to the next number, 5. Now, all multiples of 5 such as 5 × 2 = 10, 5 × 3 = 15, 5 × 4 = 20, 5 × 5 = 25, ... can be marked off. There is a slight optimization here, we do not need to start from 5 × 2 = 10. Where should we start marking off?


In fact, we can mark off multiples of 5 starting at 5 × 5 = 25, because 5 × 2 = 10 was already marked off by multiple of 2, similarly 5 × 3 = 15 was already marked off by multiple of 3. Therefore, if the current number is p, we can always mark off multiples of p starting at p2, then in increments of p: p2 + p, p2 + 2p, ... Now what should be the terminating loop condition?


It is easy to say that the terminating loop condition is p < n, which is certainly correct but not efficient. Do you still remember Hint #3?


Yes, the terminating loop condition can be p < √n, as all non-primes ≥ √n must have already been marked off. When the loop terminates, all the numbers in the table that are non-marked are prime.


The Sieve of Eratosthenes uses an extra O(n) memory and its runtime complexity is O(n log log n). For the more mathematically inclined readers, you can read more about its algorithm complexity on Wikipedia.


public int countPrimes(int n) {
   boolean[] isPrime = new boolean[n];
   for (int i = 2; i < n; i++) {
      isPrime[i] = true;
   }
   // Loop's ending condition is i * i < n instead of i < sqrt(n)
   // to avoid repeatedly calling an expensive function sqrt().
   for (int i = 2; i * i < n; i++) {
      if (!isPrime[i]) continue;
      for (int j = i * i; j < n; j += i) {
         isPrime[j] = false;
      }
   }
   int count = 0;
   for (int i = 2; i < n; i++) {
      if (isPrime[i]) count++;
   }
   return count;
}


#pragma once #include <iostream> #include <utility> #include <assert.h> #include <vector> using namespace std; namespace bit { template<class K> struct HashFunc { size_t operator()(const K& key) { return (size_t)key; } }; // 为了实现简单,在哈希桶的迭代器类中需要用到hashBucket本身, template<class K, class V, class KeyOfValue, class Hash> class HashBucket; template<class T> class HashBucketNode; // 注意:因为哈希桶在底层是单链表结构,所以哈希桶的迭代器不需要--操作 template <class K, class V, class KeyOfValue, class Hash = HashFunc<K>> struct HBIterator { typedef HashBucket<K, V, KeyOfValue, Hash> HashBucket; typedef HashBucketNode<V>* PNode; typedef HBIterator<K, V, KeyOfValue, Hash> Self; HBIterator(PNode pNode = nullptr, HashBucket* pHt = nullptr) :_pNode(PNode) ,_pHt(pHt) {} HBIterator(const HBIterator<K, V, KeyOfValue, Hash>& it) { *_pHt = *(it._pHt); _pNode = it._pNode; } Self& operator++() { // 当前迭代器所指节点后还有节点时直接取其下一个节点 if (_pNode->_pNext) _pNode = _pNode->_pNext; else { // 下一个不空的桶,返回该桶中第一个节点 size_t bucketNo = _pHt->HashFunc(KeyOfValue()(_pNode->_data)) + 1; for (; bucketNo < _pHt->BucketCount(); ++bucketNo) { _pNode = _pHt->_ht[bucketNo]; if (_pNode) break; } if (bucketNo == _pHt->BucketCount()) _pNode = nullptr; } return *this; } Self operator++(int) { Self temp = *this; ++(*this); return temp; } V& operator*() { KeyOfValue kot; return _pNode->_data; } V* operator->() { return &_pNode->_data; } bool operator==(const Self& it) const { return _pNode == it._pNode; } bool operator!=(const Self& it) const { return _pNode != it._pNode; } PNode _pNode; // 当前迭代器关联的节点 HashBucket* _pHt; // 哈希桶--主要是为了下一个空桶时候方便 }; // unordered_map中存储的是pair<K, V>的键值对,K为key的类型,V为value的类型,HF哈希函数类型 // unordered_map在实现时,只需将hashbucket中的接口重新封装即可 template<class K, class V, class HF = DefHashF<K>> class unordered_map { typedef HashBucket<K, pair<K, V>, KeyOfValue, HF> HT; // 通过key获取value的操作 struct KeyOfValue { const K& operator()(const pair<K, V>& data) { return data.first; } }; public: typename typedef HT::Iterator iterator; public: unordered_map() : _ht() {} //////////////////////////////////////////////////// iterator begin() { return _ht.begin(); } iterator end() { return _ht.end(); } //////////////////////////////////////////////////////////// // capacity size_t size()const { return _ht.size(); } bool empty()const { return _ht.empty(); } /////////////////////////////////////////////////////////// // Acess V& operator[](const K& key) { pair<iterator, bool> ret = _ht.InsertUnique(pair<K, V>(key, V())); return ret.fisrt->second; } const V& operator[](const K& key)const; ////////////////////////////////////////////////////////// // lookup iterator find(const K& key) { return _ht.Find(key); } size_t count(const K& key) { return _ht.Count(key); } ///////////////////////////////////////////////// // modify pair<iterator, bool> insert(const pair<K, V>& valye) { return _ht.Insert(valye); } iterator erase(iterator position) { return _ht.Erase(position); } //////////////////////////////////////////////////////////// // bucket size_t bucket_count() { return _ht.BucketCount(); } size_t bucket_size(const K& key) { return _ht.BucketSize(key); } private: HT _ht; }; template<class T> struct HashBucketNode { T _data; HashBucketNode<T>* _next; HashBucketNode(const T& data) :_data(data) , _next(nullptr) {} }; template<class K, class T, class KeyOfT, class Hash> class HashBucket { typedef HashBucketNode<T> Node; typedef HashBucket<K, T, KeyOfT, Hash> Self; public: template<class K> struct HashFunc { size_t operator()(const K& key) { return (size_t)key; } }; unsigned long __stl_next_prime(unsigned long n) { // Note: assumes long is at least 32 bits. static const int __stl_num_primes = 28; static const unsigned long __stl_prime_list[__stl_num_primes] = { 53, 97, 193, 389, 769, 1543, 3079, 6151, 12289, 24593, 49157, 98317, 196613, 393241, 786433, 1572869, 3145739, 6291469, 12582917, 25165843, 50331653, 100663319, 201326611, 402653189, 805306457, 1610612741, 3221225473, 4294967291 }; const unsigned long* first = __stl_prime_list; const unsigned long* last = __stl_prime_list + __stl_num_primes; const unsigned long* pos = lower_bound(first, last, n); return pos == last ? *(last - 1) : *pos; } HashBucket() { _tables.resize(__stl_next_prime(_tables.size()), nullptr); } HashBucket(const Self& ht) { _tables = new Node(ht._tables.size(), nullptr); _n = ht._n; for (size_t i = 0; i < _tables.size(); i++) { Node* cur = ht._tables[i]; Node* prev = nullptr; while (cur) { Node* newnode = new Node(cur->_data); if (prev == nullptr) { _tables[i] = newnode; } else { prev->_next = newnode; } prev = cur; cur = cur->_next; } } } Self& operator=(const Self& ht) { _tables.resize(ht._tables.size(), nullptr); _n = ht._n; for (size_t i = 0; i < _tables.size(); i++) { Node* cur = ht._tables[i]; Node* prev = nullptr; while (cur) { Node* newnode = new Node(cur->_data); if (prev == nullptr) { _tables[i] = newnode; } else { prev->_next = newnode; } prev = cur; cur = cur->_next; } } } // 哈希桶的销毁 ~HashBucket() { for (auto& e : _tables) { Node* cur = e; Node* next = nullptr; while (cur) { next = cur->_next; delete cur; cur = next; } } } // 插入值为data的元素,如果data存在则不插入 bool Insert(const T& data) { KeyOfT kot; Hash hash; if (_n == _tables.size()) { HashTable<K, T, KeyOfT, Hash> newTable(__stl_next_prime(_n + 1), nullptr); for (auto& e : _tables) { Node* cur = e; size_t i = 0; while (cur) { Node* next = cur->_next; size_t hashi = hash(kot(cur->_data)) % newTable.size(); cur->_next = newTable[hashi]; newTable[hashi] = cur; cur = next; } _tables[i++] = nullptr; } _tables.swap(newTable); } size_t hashi = hash(kot(data)) % _tables.size(); Node* newnode = new Node(data); newnode->_next = _tables[hashi]; _tables[hashi] = newnode; _n++; return true; } // 在哈希桶中查值为key的元素,存在返回true否则返回false bool Find(const K& key) { KeyOfT kot; Hash hash; size_t hashi = hash(key) % _tables.size(); Node* cur = _tables[hashi]; while (cur) { if (kot(cur->_data) == key) return true; cur = cur->_next; } return false; } // 哈希桶中删除key的元素,删除成功返回true,否则返回false bool Erase(const K& key) { KeyOfT kot; Hash hash; size_t hashi = hash(key) % _tables.size(); Node* prev = nullptr; Node* cur = _tables[hashi]; while (cur) { if (kot(cur->_data) == key) { if (prev == nullptr) { _tables[hashi] = cur->_next; delete cur; } else { prev->_next = cur->_next; delete cur; } --_n; return true; } prev = cur; } return false; } private: vector<Node*> _tables; // 指针数组 size_t _n = 0; // 表中存储数据个数 }; }
07-10
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值