Codeforces 10 D. LCIS

本文介绍了解决两个整数序列最长公共上升子序列问题的一种高效算法实现,并提供了详细的AC代码示例,通过动态规划方法求解最长公共上升子序列及其具体数值。

D. LCIS
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

This problem differs from one which was on the online contest.

The sequence a1, a2, ..., an is called increasing, if ai < ai + 1 for i < n.

The sequence s1, s2, ..., sk is called the subsequence of the sequence a1, a2, ..., an, if there exist such a set of indexes 1 ≤ i1 < i2 < ... < ik ≤ n that aij = sj. In other words, the sequence s can be derived from the sequence a by crossing out some elements.

You are given two sequences of integer numbers. You are to find their longest common increasing subsequence, i.e. an increasing sequence of maximum length that is the subsequence of both sequences.

Input

The first line contains an integer n (1 ≤ n ≤ 500) — the length of the first sequence. The second line contains n space-separated integers from the range [0, 109] — elements of the first sequence. The third line contains an integer m (1 ≤ m ≤ 500) — the length of the second sequence. The fourth line contains m space-separated integers from the range [0, 109] — elements of the second sequence.

Output

In the first line output k — the length of the longest common increasing subsequence. In the second line output the subsequence itself. Separate the elements with a space. If there are several solutions, output any.

Examples
input
7
2 3 1 6 5 4 6
4
1 3 5 6
output
3
3 5 6 
input
5
1 2 0 2 1
3
1 0 1
output
2
0 1 


我自己一开始写的 多用了一维空间

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;

ll ans; ll cnt = 0;
const int maxn = 505;
ll a[maxn], b[maxn], dp[maxn][maxn];
ll maxx;
int main(){
    int an, bn;
    cin>>an;
    for (int i=0; i<an; i++){
        cin>>a[i];
    }
    cin>>bn;
    for (int i=0; i<bn; i++){
        cin>>b[i];
    }
    memset(dp, 0, sizeof (dp));
    for (int i=0; i<bn; i++){
        if (a[0] == b[i]){
            dp[0][i] = 1;
        }
    }
    for (int i=1; i<an; i++){
        maxx = 0;
        for (int j=0; j<bn; j++){
            if (a[i] == b[j]) dp[i][j] = maxx+1;
            else dp[i][j] = dp[i-1][j];//没用的步骤
            if (b[j] < a[i]) 
                maxx = max(maxx, dp[i][j]);
        }
    }
    maxx = 0;
    for (int i=0; i<bn; i++){
        maxx = max(maxx, dp[an-1][i]);
    }
    cout<<maxx<<endl;
    return 0;
}
AC代码
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
/*
如何输出路径
dp[i] 为以 bi结尾的最长公共上升字串长度
而且越往后出现的a[i] == b[j], dp[i]肯定越大 所以更新不用判断
所以只要在dp[i]更新时记录是从哪来的 就可以了
*/
ll cnt = 0;
const int maxn = 505;
ll a[maxn], b[maxn], dp[maxn];
int pre[maxn], ans[maxn]; int pos, maxx;
int main(){
    int an, bn;
    cin>>an;
    for (int i=1; i<=an; i++){
        cin>>a[i];
    }
    cin>>bn;
    for (int i=1; i<=bn; i++){
        cin>>b[i];
    }
    memset(dp, 0, sizeof (dp));
    memset(pre, -1, sizeof(pre));
    for (int i=1; i<=an; i++){ 
        pos = 0;
        for (int j=1; j<=bn; j++){///从0开始处理边界麻烦 所以本题从1开始
            if (a[i] == b[j]) dp[j] = dp[pos] +1, pre[j] = pos;
            if (b[j] < a[i] && dp[pos] < dp[j])
                pos = j;
        }
    }
    maxx = -1;
    for (int i=1; i<=bn; i++){
        if (maxx < dp[i]) {
            maxx = dp[i];
            pos = i;
        }
    }

    for (int i=maxx; i; i--){
        ans[i] = b[pos];
        pos = pre[pos];
    }
    cout<<maxx<<endl;
    for (int i=1; i<=maxx; i++){
        printf("%d ", ans[i]);
    }
    puts("");
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值