题意:看了别人的解释:给一个数字串x,求最小的正整数e,使得pow(2,e)==x*pow(10,y),并且y大于串e的长度。
可以将式子转换一下:x*10^y<=2^e<(x+1)*10^y =>log2(x)+ylog2(10)<= e <log2(x+1)+ylog2(10),那么就可以枚举y了,当不等式左右两边在取正后不相等,较大的就是答案了
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
long long n;
char str[20];
void solve(){
sprintf(str,"%lld",n);
for (int i = strlen(str)+1; ; i++){
long long x = (long long)(log2(n)+i*log2(10));
long long y = (long long)(log2(n+1)+i*log2(10));
if (x != y){
printf("%lld\n",y);
break;
}
}
}
int main(){
while (scanf("%lld",&n) != EOF){
solve();
}
return 0;
}