“Or” Game
Time Limit: 2000MS Memory Limit: 262144KB 64bit IO Format: %I64d & %I64u
Description
You are given n numbers a1, a2, …, an. You can perform at most k operations. For each operation you can multiply one of the numbers by x. We want to make as large as possible, where denotes the bitwise OR.
Find the maximum possible value of after performing at most k operations optimally.Input
The first line contains three integers n, k and x (1 ≤ n ≤ 200 000, 1 ≤ k ≤ 10, 2 ≤ x ≤ 8).
The second line contains n integers a1, a2, …, an (0 ≤ ai ≤ 109).Output
Output the maximum value of a bitwise OR of sequence elements after performing operations.
Samples
Input1
3 1 2
1 1 1Output1
3
Input2
4 2 3
1 2 4 8Output2
79
Hint
For the first sample, any possible choice of doing one operation will result the same three numbers 1, 1, 2 so the result is .
![]()
For the second sample if we multiply 8 by 3 two times we’ll get 72. In this case the numbers will become 1, 2, 4, 72 so the OR value will be 79 and is the largest possible result.Source
Codeforces Round #320 (Div. 1) [Bayan Thanks-Round]
一道贪心的题,因为是or,所以应该让高位尽量高,所以所有操作应该都在一个数上面,然后可以用前后缀优化orz(我没想到写了个nlogn)优化成O(n)orz
下面放代码:
写前后缀实际上要短很多orz:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<set>
#include<queue>
#include<algorithm>
#include<vector>
#include<cstdlib>
#include<cmath>
#include<ctime>
#include<stack>
#define INF 2100000000
#define ll long long
#define clr(x) memset(x,0,sizeof(x))
#define clrmax(x) memset(x,127,sizeof(x))
using namespace std;
inline int read()
{
char c;
int ret=0;
while(!(c>='0'&&c<='9'))
c=getchar();
while(c>='0'&&c<='9')
{
ret=(c-'0')+(ret<<1)+(ret<<3);
c=getchar();
}
return ret;
}
#define M 200005
int n,k,x;
ll a[M],lg2[40],t=1,ans;
int main()
{
n=read();k=read();x=read();
for(int i=1;i<=n;i++)
a[i]=read();
for(int i=1;i<=k;i++)
t*=x;
for(int i=1;i<=n;i++)
for(int j=a[i];j;j-=j&(-j))
{
int temp=j&(-j);
temp=log((double)temp+0.5)/log(2.0);
lg2[temp]++;
}
for(int i=1;i<=n;i++)
{
ll num=a[i]*t;
for(int j=a[i];j;j-=j&(-j))
{
int temp=j&(-j);
temp=log((double)temp+0.5)/log(2.0);
lg2[temp]--;
}
ll x=0;
for(int j=0;j<=32;j++)
if(lg2[j])x+=1<<j;
x|=num;
ans=max(ans,x);
for(int j=a[i];j;j-=j&(-j))
{
int temp=j&(-j);
temp=log((double)temp+0.5)/log(2.0);
lg2[temp]++;
}
}
cout<<ans;
return 0;
}
大概就是这个样子,如果有什么问题,或错误,请在评论区提出,谢谢。