HDU 5375 Gray code

本文介绍了一种基于动态规划的方法来解决灰码最大值问题,即如何从包含不确定位的二进制数中找到能够获得最大积分的灰码表示。


Gray code

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 904    Accepted Submission(s): 510


Problem Description
The reflected binary code, also known as Gray code after Frank Gray, is a binary numeral system where two successive values differ in only onebit (binary digit). The reflected binary code was originally designed to prevent spurious output from electromechanical switches. Today, Gray codes are widely used to facilitate error correction in digital communications such as digital terrestrial television and some cable TV systems.



Now , you are given a binary number of length n including ‘0’ , ’1’ and ‘?’(? means that you can use either 0 or 1 to fill this position) and n integers(a1,a2,….,an) . A certain binary number corresponds to a gray code only. If the ith bit of this gray code is 1,you can get the point ai.
Can you tell me how many points you can get at most?

For instance, the binary number “00?0” may be “0000” or “0010”,and the corresponding gray code are “0000” or “0011”.You can choose “0000” getting nothing or “0011” getting the point a3 and a4.
 


Input
The first line of the input contains the number of test cases T.

Each test case begins with string with ‘0’,’1’ and ‘?’.

The next line contains n (1<=n<=200000) integers (n is the length of the string).

a1 a2 a3 … an (1<=ai<=1000)
 


Output
For each test case, output “Case #x: ans”, in which x is the case number counted from one,’ans’ is the points you can get at most
 


Sample Input
  
2 00?0 1 2 4 8 ???? 1 2 4 8
 


Sample Output
  
Case #1: 12 Case #2: 15
Hint
https://en.wikipedia.org/wiki/Gray_code http://baike.baidu.com/view/358724.htm
 


Author
UESTC
 


Source
 


Recommend

输入是二进制的,能转换成格雷码,若格雷码对应位是1,那么就能取到这一位对应的值,求输入情况中,能取得最大值。这是一个DP题,DP[i][j]表示第I位取1或者0,所以,dp[i][0] = dp[i-1][1]+num[i],应为如果二进制中,I和I-1不相等,那么格雷码这一位就是1,就要取值。

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
#define ll long long

ll num[200010];
ll dp[200010][2];
int main()
{
	ll T;
	cin >> T;
	ll g = 1;
	while(T--)
	{
		printf("Case #%lld: ",g++);
		string s;
		cin >> s;
		for(int i=0;i<s.length();i++)
		scanf("%lld",&num[i]);
		memset(dp,0,sizeof(dp));
		if(s[0]=='1'||s[0]=='?')dp[0][1] = num[0];
		for(int i=1;i<s.length();i++)
		{
			if (s[i - 1] == '?')
			{
				if (s[i] == '?')
				{
					dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] + num[i]);
					dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + num[i]);
				}
				else if (s[i] == '0')
					dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] + num[i]);
				else
					dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + num[i]);
			}
			else if (s[i - 1] == '0')
			{
				if (s[i] == '?')
				{
					dp[i][0] = dp[i - 1][0];
					dp[i][1] = dp[i - 1][0] + num[i];
				}
				else if (s[i] == '0')
					dp[i][0] = dp[i - 1][0];
				else
					dp[i][1] = dp[i - 1][0] + num[i];
			}
			else
			{
				if (s[i] == '?')
				{
					dp[i][0] = dp[i - 1][1]+num[i];
					dp[i][1] = dp[i - 1][1] ;
				}
				else if (s[i] == '0')
					dp[i][0] = dp[i - 1][1]+num[i];
				else
					dp[i][1] = dp[i - 1][1];
			}
		}
		cout<<max(dp[s.length()-1][0],dp[s.length()-1][1])<<endl;
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值