hdu 4291 矩阵幂 循环节

本文介绍了解决HDU 4291问题的方法,利用矩阵快速幂运算和循环节特性计算g(g(g(n)))mod10^9+7。通过求解不同模数下的循环节,实现复杂度的有效降低。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

http://acm.hdu.edu.cn/showproblem.php?pid=4291

凡是取模的都有循环节-----常数有,矩阵也有,而且矩阵的更神奇:
g(g(g(n))) mod 109 + 7  最外层MOD=1e9+7  可以算出g(g(n))的循环节222222224,进而算出g(n)的循环节183120LL,然后由内而外计算即可

注释掉的是求循环节的代码


//#pragma comment(linker, "/STACK:102400000,102400000")
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <string>
#include <iostream>
#include <iomanip>
#include <cmath>
#include <map>
#include <set>
#include <queue>
using namespace std;

#define ls(rt) rt*2
#define rs(rt) rt*2+1
#define ll long long
#define ull unsigned long long
#define rep(i,s,e) for(int i=s;i<e;i++)
#define repe(i,s,e) for(int i=s;i<=e;i++)
#define CL(a,b) memset(a,b,sizeof(a))
#define IN(s) freopen(s,"r",stdin)
#define OUT(s) freopen(s,"w",stdout)
const ll ll_INF = ((ull)(-1))>>1;
const double EPS = 1e-8;
const double pi = acos(-1.0);
const int INF = 100000000;
const ll MOD[3] = {183120LL,222222224LL,1000000007LL};
const int N = 2;

struct Matrix{
    ll m[N][N];
    //int sz;//矩阵的大小
};

Matrix I= {3LL,1LL,//要幂乘的矩阵
           1LL,0LL,
          };
Matrix unin={1LL,0LL,//单位矩阵
             0LL,1LL,
            };
Matrix matrixmul(Matrix a,Matrix b,long long  mod)//矩阵a乘矩阵b
{
    Matrix c;
    for(int i=0; i<N; i++)
        for(int j=0; j<N; j++)
        {
            c.m[i][j]=0LL;
            for(int k=0; k<N; k++)
                c.m[i][j]+=(a.m[i][k]*b.m[k][j])%mod;
            c.m[i][j]%=mod;
        }
    return c;
}
Matrix quickpow(long long n,long long  mod)
{
    Matrix m=I,b=unin;//求矩阵I的n阶矩阵
    while(n>=1)
    {
        if(n&1)
            b=matrixmul(b,m,mod);
        n=n>>1;
        m=matrixmul(m,m,mod);
    }
    return b;
}

ll solve(ll n)
{
    ll ans;
    Matrix ret;
    ret.m[0][0]=n;
    for(int i=0;i<3;i++)
    {
        if(ret.m[0][0]!=0 && ret.m[0][0]!=1)ret=quickpow(ret.m[0][0]-1,MOD[i]);
    }

    return ret.m[0][0];
}

int main()
{
    //precal();
    ll n;
    while(~scanf("%I64d",&n))
    {
        if(n==0){puts("0");continue;}
        if(n==1){puts("1");continue;}
        //printf("%I64d\n",solve(n));
        cout << solve(n)%1000000007LL << endl;
    }
    return 0;
}

hdu 4291 矩阵幂  循环节

### HDU 2544 题目分析 HDU 2544 是关于最短路径的经典问题,可以通过多种方法解决,其中包括基于邻接矩阵的 Floyd-Warshall 算法。以下是针对该问题的具体解答。 --- #### 基于邻接矩阵的 Floyd-Warshall 实现 Floyd-Warshall 算法是一种动态规划算法,适用于计算任意两点之间的最短路径。它的时间复杂度为 \( O(V^3) \),其中 \( V \) 表示节点的数量。对于本题中的数据规模 (\( N \leq 100 \)),此算法完全适用。 下面是具体的实现方式: ```cpp #include <iostream> #include <algorithm> using namespace std; const int INF = 0x3f3f3f3f; int dist[105][105]; int n, m; void floyd() { for (int k = 1; k <= n; ++k) { // 中间节点 for (int i = 1; i <= n; ++i) { // 起始节点 for (int j = 1; j <= n; ++j) { // 结束节点 if (dist[i][k] != INF && dist[k][j] != INF) { dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j]); } } } } } int main() { while (cin >> n >> m && (n || m)) { // 初始化邻接矩阵 for (int i = 1; i <= n; ++i) { for (int j = 1; j <= n; ++j) { if (i == j) dist[i][j] = 0; else dist[i][j] = INF; } } // 输入边的信息并更新邻接矩阵 for (int i = 0; i < m; ++i) { int u, v, w; cin >> u >> v >> w; dist[u][v] = min(dist[u][v], w); dist[v][u] = min(dist[v][u], w); // 如果是有向图,则去掉这一行 } // 执行 Floyd-Warshall 算法 floyd(); // 输出起点到终点的最短距离 cout << (dist[1][n] >= INF ? -1 : dist[1][n]) << endl; } return 0; } ``` --- #### 关键点解析 1. **邻接矩阵初始化** 使用二维数组 `dist` 存储每一对节点间的最小距离。初始状态下,设所有节点对的距离为无穷大 (`INF`),而同一节点自身的距离为零[^4]。 2. **输入处理** 对于每条边 `(u, v)` 和权重 `w`,将其存储至邻接矩阵中,并取较小值以防止重边的影响[^4]。 3. **核心逻辑** Floyd-Warshall 的核心在于三重循环:依次尝试通过中间节点优化其他两节点间的距离关系。具体而言,若从节点 \( i \) 到 \( j \) 可经由 \( k \) 达成更优解,则更新对应位置的值[^4]。 4. **边界条件** 若最终得到的结果仍为无穷大(即无法连通),则返回 `-1`;否则输出实际距离[^4]。 --- #### 性能评估 由于题目限定 \( N \leq 100 \),因此 \( O(N^3) \) 的时间复杂度完全可以接受。此外,空间需求也较低,适合此类场景下的应用。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值