Problem:
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
思路:从上向下迭代,用一个n长的数组保存当前行所有最小路径的值。
Solution:
public class Solution {
public int minimumTotal(List<List<Integer>> triangle) {
if(triangle==null||triangle.size()==0||triangle.get(0).size()==0)
return 0;
if(triangle.size()==1)
return triangle.get(0).get(0);
int[] minReco = new int[triangle.size()];
minReco[0] = triangle.get(0).get(0);
for(int i=1;i<triangle.size();i++)
{
int[] pre = new int[2];
for(int j=0;j<triangle.get(i).size();j++)
{
pre[0] = pre[1];
pre[1] = minReco[j];
if(j==0)
{
minReco[0] += triangle.get(i).get(0);
}
else if(j==triangle.get(i).size()-1)
{
minReco[j] = pre[0] + triangle.get(i).get(j);
}
else
{
minReco[j] = Math.min(minReco[j]+triangle.get(i).get(j), pre[0]+triangle.get(i).get(j));
}
}
}
int min = Integer.MAX_VALUE;
for(int val:minReco)
{
if(min>val)
min = val;
}
return min;
}
}
public int minimumTotal(List<List<Integer>> triangle) {
if(triangle==null||triangle.size()==0||triangle.get(0).size()==0)
return 0;
if(triangle.size()==1)
return triangle.get(0).get(0);
int[] minReco = new int[triangle.size()];
minReco[0] = triangle.get(0).get(0);
for(int i=1;i<triangle.size();i++)
{
int[] pre = new int[2];
for(int j=0;j<triangle.get(i).size();j++)
{
pre[0] = pre[1];
pre[1] = minReco[j];
if(j==0)
{
minReco[0] += triangle.get(i).get(0);
}
else if(j==triangle.get(i).size()-1)
{
minReco[j] = pre[0] + triangle.get(i).get(j);
}
else
{
minReco[j] = Math.min(minReco[j]+triangle.get(i).get(j), pre[0]+triangle.get(i).get(j));
}
}
}
int min = Integer.MAX_VALUE;
for(int val:minReco)
{
if(min>val)
min = val;
}
return min;
}
}