Hackerrank :Candies

本文介绍了一个经典的编程问题——最小糖果分配问题。问题中孩子们根据表现评分排队,表现更好的孩子需要获得比邻近孩子更多的糖果。文章提供了一种从两端向中间扫描的方法来确定每个孩子的糖果数量,以达到总糖果数最小的目标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Candies

Problem Statement

Alice is a kindergarden teacher. She wants to give some candies to the children in her class.  All the children sit in a line ( their positions are fixed), and each  of them has a rating score according to his or her performance in the class.  Alice wants to give at least 1 candy to each child. If two children sit next to each other, then the one with the higher rating must get more candies. Alice wants to save money, so she needs to minimize the total number of candies given to the children.

Input Format

The first line of the input is an integer N, the number of children in Alice's class. Each of the following N lines contains an integer that indicates the rating of each child.

1 <= N <= 105 
1 <= ratingi <= 105

Output Format

Output a single line containing the minimum number of candies Alice must buy.

Sample Input

3  
1  
2  
2

Sample Output

4

Explanation

Here 1, 2, 2 is the rating. Note that when two children have equal rating, they are allowed to have different number of candies. Hence optimal distribution will be 1, 2, 1.

题意:一堆小孩站成一排,每个小孩有一个分数,现在给各个小孩发糖果,每个小孩最少是一个糖果,如果这个小孩的分数比相邻小孩分数高,那么他得到的糖果也要比相邻小孩糖果多。问一共最少需要多少糖果。

从左到右扫一遍,从右到左扫一遍,求出每一个位置要求的最大值,相加得到结果。

代码:

#pragma warning(disable:4996)
#include <iostream>
#include <algorithm>
#include <cmath>
#include <vector>
#include <string>
#include <cstring>
#include <set>
#include <queue>
#include <stack>
#include <map>
using namespace std;
typedef long long ll;

#define INF 0x7fffffff
const int maxn = 100005;

int n, m;
int rating[maxn];
int dp1[maxn];
int dp2[maxn];

void input()
{
	int i;
	scanf("%d", &n);
	for (i = 1; i <= n; i++)
	{
		scanf("%d", &rating[i]);
		dp1[i] = 1;
		dp2[i] = 1;
	}
}

void solve()
{
	int i;
	for (i = 2; i <= n; i++)
	{
		if (rating[i] > rating[i - 1])
		{
			dp1[i] = dp1[i - 1] + 1;
		}
	}
	for (i = n-1; i >=1 ; i--)
	{
		if (rating[i] > rating[i + 1])
		{
			dp2[i] = dp2[i + 1] + 1;
		}
	}
	ll res = 0;
	for (i = 1; i <= n; i++)
	{
		res += max(dp1[i], dp2[i]);
	}
	cout << res;
}

int main()
{
	//freopen("i.txt","r",stdin);
	//freopen("o.txt","w",stdout);

	input();
	solve();

	//system("pause");
	return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值