使用Keras可以比较方便地搭建一些深度学习网络,获取中间层输出可以帮助理解它是如何运行的。这里使用一个小型的Keras网络,对Caltech101数据集进行图像分类,并获取中间层输出结果,以及手工计算卷积层的输出结果。
修正:表示当前是训练模式还是测试模式的参数K.learning_phase()文中表述和使用有误,在该函数说明中可以看到:
The learning phase flag is a bool tensor (0 = test, 1 = train),所以0是测试模式,1是训练模式,部分网络结构下两者有差别。
我使用的版本:
1. WIN7系统
2. Python 2.7.10.2
3. Keras 2.0.8
4. Theano 0.9.0
5. numpy 1.13.1
6. h5py 2.5.0
7. OpenCV 2.4.13
在ubuntu中也可运行,需要修改文件路径,并且如果在ubuntu中使用的后端是tensorflow,后面的kernel不需要翻转。我的Keras设置中总是:"image_data_format": "channels_last"。
参考资料:
1. http://keras-cn.readthedocs.io/en/latest/for_beginners/FAQ/#intermediate_layer
2. cs231n_2017_lecture5
从文件夹中提取图像数据的方式:
函数:
def eachFile(filepath): #将目录内的文件名放入列表中
pathDir = os.listdir(filepath)
out = []
for allDir in pathDir:
child = allDir.decode('gbk') # .decode('gbk')是解决中文显示乱码问题
out.append(child)
return out
def get_data(data_name,train_left=0.0,train_right=0.7,train_all=0.7,resize=True,data_format=None,t=''): #从文件夹中获取图像数据
file_name = os.path.join(pic_dir_out,data_name+t+'_'+str(train_left)+'_'+str(train_right)+'_'+str(Width)+"X"+str(Height)+".h5")
print file_name
if os.path.exists(file_name): #判断之前是否有存到文件中
f = h5py.File(file_name,'r')
if t=='train':
X_train = f['X_train'][:]
y_train = f['y_train'][:]
f.close()
return (X_train, y_train)
elif t=='test':
X_test = f['X_test'][:]
y_test = f['y_test'][:]
f.close()
return (X_test, y_test)
else:
return
data_format = conv_utils.normalize_data_format(data_format)
pic_dir_set = eachFile(pic_dir_data)
X_train = []
y_train = []
X_test = []
y_test = []
label = 0
for pic_dir in pic_dir_set:
print pic_dir_data+pic_dir
if not os.path.isdir(os.path.join(pic_dir_data,pic_dir)):
continue
pic_set = eachFile(os.path.join(pic_dir_data,pic_dir))
pic_index = 0
train_count = int(len(pic_set)*train_all)
train_l = int(len(pic_set)*train_left)
train_r = int(len(pic_set)*train_right)
for pic_name in pic_set:
if not os.path.isfile(os.path.join(pic_dir_data,pic_dir,pic_name)):
continue
img = cv2.imread(os.path.join(pic_dir_data,pic_dir,pic_name))
if img is None:
continue
if (resize):
img = cv2.resize(img,(Width,Height))
if (data_format == 'channels_last'):
img = img.reshape(-1,Width,Height,3)
elif (data_format == 'channels_first'):
img = img.reshape(-1,Width,Height,3)
img = img.transpose(0, 3, 1, 2)
if (pic_index < train_count):
if t=='train':
if (pic_index >= train_l and pic_index < train_r):
X_train.append(img)
y_train.append(label)
else:
if t=='test':
X_test.append(img)
y_test.append(label)
pic_index += 1
if len(pic_set) <> 0:
label += 1
f = h5py.File(file_name,'w')
if t=='train':
X_train = np.concatenate(X_train,axis=0)
y_train = np.array(y_train)
f.create_dataset('X_train', data = X_train)
f.create_dataset('y_train', data = y_train)
f.close()
return (X_train, y_train)
elif t=='test':
X_test = np.concatenate(X_tes