1.题目描述
Given an array of size n, find the majority element. The majority element is the element that appears more than ⌊ n/2 ⌋ times.
You may assume that the array is non-empty and the majority element always exist in the array.
翻译:给一个长度为n的数组,找出其中出现次数>n/2的元素。假设一定存在
2.分析
统计了一下几种解法:
(1)找数组中位数。参考快排的partition函数,pivot=mid,就是中位数。或者暴力一点,直接排序后取中位数。
(2)多数投票算法Majority Vote Algorithm。
一次遍历,O(n)。大概思想是:元素相同->count++(赞同票),元素不同->count–(反对票)。大多数元素的个数>n/2。所以最后胜出的必然是大多数。
(3)对元素出现次数计数,选出出现次数>n/2。
(4)随机数。随机挑选一个元素,对这个元素计数判断是否>n/2次。有大于50%的概率会选中,所以还是比较巧妙的方法。
3.代码
c++
快排的partition
int partition(vector<int>& nums, int left,int right) {
int pivot = nums[left];
int low = left;
int high = right;
while (low < high) {
while (low<high && nums[high]>=pivot)
--high;
nums[low] = nums[high];
while (low < high && nums[low] <= pivot)
++low;
nums[high] = nums[low];
}
nums[low] = pivot;
return low;
}
int majorityElement(vector<int>& nums) {
int low = 0;
int high = nums.size() - 1;
int mid = (low + high) / 2;
int pivot = partition(nums, low, high);
while (pivot != mid) {
if (pivot < mid)
pivot = partition(nums, pivot + 1, high);
else
pivot = partition(nums, low, pivot - 1);
}
return nums[pivot];
}
Majority Vote Algorithm
int majorityElement(vector<int>& nums) {
int count = 0;
int candidate;
for (int n : nums) {
if (count == 0)
{
++count;
candidate = n;
}
else {
if (n == candidate)
++count;
else
--count;
}
}
return candidate;
}
随机数
int majorityElement(vector<int>& nums) {
int n = nums.size();
srand(unsigned(time(NULL)));
while (true) {
int index = rand() % n;
int count = 0;
for (int n : nums)
if (n == nums[index])
++count;
if (count > n / 2)
return nums[index];
}
}