【算法题】找到数组中和为固定值的两个元素

本文介绍了一道算法题目,要求在给定的整数数组中找到两个元素,它们的和等于给定的目标值。文章提供了三种解决方案:两层遍历、排序法和利用Map。分别分析了它们的时间复杂度,分别是O(N*N)、O(N*logN)和O(N)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在阅读的过程中有任何问题,欢迎一起交流

邮箱:1494713801@qq.com   

QQ:1494713801

 

题目:编写一个函数,输入为一个int型的数组numbers和一个int型变量target,找到这个数组中和为target的两个元素,输出其index

假设每组输入有且仅有一组输出

示例

Input: numbers={6, 2, 15, 7,11}, target=9

Output: index1=1, index2=2

解答

1. 查找法

两层遍历,最直观

时间复杂度:  O(N*N)

2.排序法

numbers按递增排序(快排),设置两个游标idx1idx2

Idx1=0

Idx2=numbers.size

如果numbers[idx1]+numbers[idx2]==target,则要求的解为numbers[idx1]在原数列中的下标(现在的numbers是已经排序后的)和numbers[idx2]在原数列中的下标;

如果numbers[idx1]+numbers[idx2]>target,idx2--;

如果numbers[idx1]+numbers[idx2]<target,idx1++;

时间复杂度: O(N*logN)

3. 利用Map:

建立一个空Mapmap中保存的是已经扫描过的number。

<K, V><numbers值,numbers下标>

对于numbers[i],如果map中存在K=target-numbers[i],则要求的解为V(K=target-numbers对应的)和i如果不存在,则向map中添加<numbers[i],i>

时间复杂度:O(N)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值