lucene的分词_分词器的原理讲解
--------------------------------------------------------
几个默认分词
SimpleAnalyzerStopAnalyzer
WhitespaceAnalyzer(根据空格分词)
StandardAnalyzer
分词流程
Reader ---->Tokenizer---->大量的TokenFilter---->最后生成TokenStreamTokenizer:主要负责接收Reader字节流,将Reader进行分词操作。
TokenFilter:对已经分好词的语汇单元进行各种各样的过滤操作
TokenStream:分词器做好处理之后得到的一个流。这个流中存储了分词的各种信息,可以tokenStream有效的获取到分词单元信息
在这个流中分词需要存储的涉及的信息
CharTermAttribute:保存相应的词汇
OffsetAttribute:以增量的方式保存次序,各个词汇的偏移量
PositionIncrementAttribute:保存词与词之间的位置增量(0:同位词。2:表示中间有词汇)
TypeAttribute:类型信息
---------------------------------------------------------
lucene的分词_通过TokenStream显示分词
---------------------------------------------------------
/*
* 显示分词(TokenStream流再用CharTermAttribute捕获)
*/
public static void displayToken(String str, Analyzer a) {
try {
// "content"没有任何意义
// 通过分词器Analyzer创建TokenStream流
TokenStream stream = a.tokenStream("content", new StringReader(str));
// 创建用于接收信息的CharTermAttribute,这个属性会添加到流中,随着TokenStream增加
CharTermAttribute cta = stream.addAttribute(CharTermAttribute.class);
while (stream.incrementToken()) {
System.out.print("[" + cta + "]");
}
System.out.println();
} catch (IOException e) {
e.printStackTrace();
}
}
/*
*测试
*/
@Test
public void test01() {
// 创建几个analyzer
Analyzer a1 = new StandardAnalyzer(Version.LUCENE_35);
Analyzer a2 = new StopAnalyzer(Version.LUCENE_35);
Analyzer a3 = new SimpleAnalyzer(Version.LUCENE_35);
Analyzer a4 = new WhitespaceAnalyzer(Version.LUCENE_35);
String txt = "this is my house,I am come from HuNan";
new AnalyzerUtils().displayToken(txt, a1);
new AnalyzerUtils().displayToken(txt, a2);
new AnalyzerUtils().displayToken(txt, a3);
new AnalyzerUtils().displayToken(txt, a4);
}
-------------------------------------------------------------
lucene分词_通过TokenStream显示分词的详细信息
-------------------------------------------------------------
/*
* 显示所有重要的分词信息
*/
public static void displayAllTokenInfo(String str, Analyzer a) {
try {
TokenStream stream = a.tokenStream("content", new StringReader(str));
// 增量信息
PositionIncrementAttribute pia = stream.addAttribute(PositionIncrementAttribute.class);
// offset偏移量信息OffsetAttribute oa = stream.addAttribute(OffsetAttribute.class);
// 分词词汇信息
CharTermAttribute cta = stream.addAttribute(CharTermAttribute.class);
// 类型信息
TypeAttribute ta = stream.addAttribute(TypeAttribute.class);
while (stream.incrementToken()) {
System.out.print("位置增量" + pia.getPositionIncrement() + ":");
System.out.print("词汇信息&偏移量&类型" + cta + "[" + oa.startOffset()+ "-" + oa.endOffset() + "]" + ta.type()+"\n");
}
} catch (Exception e) {
e.printStackTrace();
}
}
----------------------------------------------------------
lucene的分词_扩展stop分词(自定义stopfilterAnalyzer,增加过滤数组)
----------------------------------------------------------
/*
* 自定义过滤分词器
*/
public class MystopAnalyzer extends Analyzer {
private Set stops;
public MystopAnalyzer(){
stops=StopAnalyzer.ENGLISH_STOP_WORDS_SET;
}
public MystopAnalyzer(String[] sws) {
// 查看默认过滤的词汇单元
System.out.println(StopAnalyzer.ENGLISH_STOP_WORDS_SET);
// 创建分词器(会自动将字符串数组转化成set)
stops = StopFilter.makeStopSet(Version.LUCENE_35, sws, true);
// 给自定义的过滤分词器添加原来默认的过滤数组
stops.addAll(StopAnalyzer.ENGLISH_STOP_WORDS_SET);
}
@Override
public TokenStream tokenStream(String fieldName, Reader reader) {
// 添加过滤器链(filter)(过滤掉set数组,忽略大小写)和Tokenizer
return new StopFilter(Version.LUCENE_35,
new LowerCaseFilter(Version.LUCENE_35,
new LetterTokenizer(Version.LUCENE_35,reader)), stops);
}
}
//测试
// 创建自定义的analyzer(添加需要过滤掉的词汇单元 )
Analyzer a1 = new MystopAnalyzer(new String[]{"I","YOU"});