之前已经介绍过了DTW算法,现在根据文章 toward accurate dynamic time warping in linear time and space,以及别人实现的fastdtw代码分析fast-DTW算法。参考博客:http://www.cnblogs.com/kemaswill/archive/2013/04/18/3029078.html
简单讲讲fast-DTW,该算法最主要有两个部分,第一个是约束
将搜索空间约束在阴影位置,减少了搜索的次数。
第二个是抽象(abstraction),将图像的像素合并,1/1–>1/2–>1/4–>1/8…知道可以确定路径。如下图,当像素合并为1/8时,已经可以确定路径,即从左下角到右上角。接着再像素粒度细化,从1/8回到1/4确定该像素下的路径,接着1/2,最后1/1。
接下来我们看看python实现的fastdtw算法。
def fastdtw(x, y, radius=1, dist=lambda a, b: abs(a - b)):
min_time_size = radius + 2
if len(x) < min_time_size or len(y) < min_time_size:
return dtw(x, y, dist=dist)
x_shrinked = __reduce_by_half(x)
y_shrinked = __reduce_by_half(y)
distance, path = fastdtw(x_shrinked, y_shrinked, radius=radius, dist=dist)
window = __expand_w