Populating Next Right Pointers in Each Node
Total Accepted: 10797 Total Submissions: 31598 My SubmissionsGiven a binary tree
struct TreeLinkNode {
TreeLinkNode *left;
TreeLinkNode *right;
TreeLinkNode *next;
}
Populate each next pointer to point to its next right node. If there is no next right node, the next pointer should be set to NULL.
Initially, all next pointers are set to NULL.
Note:
- You may only use constant extra space.
- You may assume that it is a perfect binary tree (ie, all leaves are at the same level, and every parent has two children).
For example,
Given the following perfect binary tree,
1
/ \
2 3
/ \ / \
4 5 6 7
After calling your function, the tree should look like:
1 -> NULL
/ \
2 -> 3 -> NULL
/ \ / \
4->5->6->7 -> NULL
Populating Next Right Pointers in Each Node II
Total Accepted: 7484 Total Submissions: 25621 My SubmissionsFollow up for problem "Populating Next Right Pointers in Each Node".
What if the given tree could be any binary tree? Would your previous solution still work?
Note:
- You may only use constant extra space.
For example,
Given the following binary tree,
1
/ \
2 3
/ \ \
4 5 7
After calling your function, the tree should look like:
1 -> NULL
/ \
2 -> 3 -> NULL
/ \ \
4-> 5 -> 7 -> NULL
I.考虑到要求常量空间,我琢磨了半天,想到可以将每一个结点的next变量当作栈来模拟递归,代码如下,做了第二题以后,发现其实可以从左往右递归会更简练一点.
II(1)延续第一题的思路利用next变量,不过这次更麻烦,通过从root到leaf每一层设一个前沿指针,并把它们链接起来,自下而上推进前沿并维持前沿链.这中间情况比较复杂...
II(2)网上找的方法,一层层构建,第一层不用构建,当n-1层构建好时,走过n-1层构建第n层,over...
class Solution {
private:
TreeLinkNode *findNext(TreeLinkNode *what)//找到what结点的右边
{
int c = 0;
while(what->next != NULL && what == what->next->right)
{
what = what->next;
c++;
}
if(what->next == NULL)
{
return NULL;
}
what = what->next->right;
while(c-- > 0)
{
what = what->left;
}
return what;
}
public:
void connect(TreeLinkNode *root) {
if(root == NULL)
{
return;
}
if(root->left == NULL)
{
root->next = NULL;
return;
}
root->next = NULL;
TreeLinkNode xxx(0);//哨兵,最右边的一条root to leaf每个结点的next值为NULL,但同时循环中用NULL判断是否来过
TreeLinkNode *what = root;
while(what != NULL)
{
if(what->left == NULL || what->left->next != NULL)//叶结点或子结点已走过
{
TreeLinkNode *parent = what->next;
if(what == parent->left)//当前结点是亲结点的左孩子
{
what->next = parent->right;
}
else
{
what->next = findNext(what);
if(what->next == NULL)
{
what->next = &xxx;
}
}
if(what == root->left)//Over.
{
break;
}
else
{
what = parent;
}
}
else if(what->right->next == NULL)//进入右子树
{
what->right->next = what;
what = what->right;
}
else//进入左子树
{
what->left->next = what;
what = what->left;
}
}
what = root->right;//还原哨兵值
while(what != NULL)
{
what->next = NULL;
what = what->right;
}
}
};
class Solution {
private:
void build(TreeLinkNode *root)//建立层级链
{
while(root->left != NULL)
{
root->next = root->left;
root = root->next;
}
}
TreeLinkNode *go(TreeLinkNode *root)//寻找当前链中离底部最近的可拓展结点(右子树为空)
{
TreeLinkNode *last = NULL;
while(root != NULL)
{
if(root->next != root->right && root->right != NULL)
{
last = root;
}
root = root->next;
}
return last;
}
TreeLinkNode *getChild(TreeLinkNode *root)//抓取子结点,左优先
{
if(root->left != NULL)
{
return root->left;
}
else
{
return root->right;
}
}
public:
void connect(TreeLinkNode *root) {
if(root == NULL)
{
return;
}
TreeLinkNode *level;
build(root);
while((level = go(root)) != NULL)
{
TreeLinkNode *t = level->next;
if(t == NULL)//链长增加,更新
{
level->next = level->right;
level = level->next;
while(level->left != NULL)
{
level->next = level->left;
level = level->next;
}
}
else//右子树拓展
{
level->next = level->right;
level->right->next = t->next;
t->next = level->right;
level = level->right;
TreeLinkNode *c;
while((c = getChild(level)) != NULL)
{
t = level->next;
level->next = c;
if(t != NULL)
{
c->next = t->next;
t->next = c;
}
level = level->next;
}
}
}
//对尾部指针封零
while(root->next != NULL)
{
TreeLinkNode *t = root;
root = root->next;
t->next = NULL;
}
}
};
class Solution {
public:
void connect(TreeLinkNode *root) {
if(root == NULL)
{
return;
}
TreeLinkNode *nextLH = root;
while(nextLH != NULL)
{
TreeLinkNode *nowLN = nextLH;
TreeLinkNode *tail = NULL;
nextLH = NULL;
while(nowLN != NULL && nowLN->left == NULL && nowLN->right == NULL)//寻找下一级的头结点
{
nowLN = nowLN->next;
}
if(nowLN != NULL)
{
if(nowLN->left != NULL)
{
nextLH = nowLN->left;
nextLH->next = nowLN->right;
tail = nextLH->next == NULL ? nextLH : nextLH->next;
}
else
{
nextLH = tail = nowLN->right;
}
}
nowLN = nowLN == NULL ? nowLN : nowLN->next;
while(nowLN != NULL)//通过本级链接下一级
{
if(nowLN->left != NULL)
{
tail->next = nowLN->left;
tail = tail->next;
}
if(nowLN->right != NULL)
{
tail->next = nowLN->right;
tail = tail->next;
}
nowLN = nowLN->next;
}
}
}
};
本文深入分析了在仅使用常量额外空间的情况下,如何解决填充二叉树节点的下一右节点问题。通过多层次链接和递归模拟,实现了在完美二叉树和任意二叉树上的高效算法。详细阐述了两种解决方案,包括使用节点的next指针作为栈的递归模拟和自底向上构建层级链接的方法。最后,提供了对复杂代码的理解和优化建议。
736

被折叠的 条评论
为什么被折叠?



